【題目】如圖,已知是的直徑,且,是上一點,將弧沿直線翻折,使翻折后的圓弧恰好經(jīng)過圓心,則
(1)的長是_________.
(2)劣弧的長是__________.
【答案】
【解析】
(1)首先利用垂徑定理以及“30°角所對的直角邊等于斜邊的一半”得出∠EAO為30°,由此進一步利用三角函數(shù)即可得出AC;
(2)由(1)進一步得出∠COB=60°,然后進一步結(jié)合題意直接計算出劣弧BC的長即可.
如圖,作交于,交于,連接,,則:OA=OF=OC=OB,
(1)由折疊的性質(zhì)可知,,
∴,
∴在Rt△AOE中,30°,
∵AB=4,
∵AB為直徑,
∴∠ACB=90°
∴在Rt△CAB中,cos∠CAB,
∴,
故答案為:;
(2)由(1)可得∠CBO=90°∠CAB=60°,
又∵CO=OB,
∴∠COB=60°,
∴劣弧的長,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上.將△ABC繞點A按順時針方向旋轉(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫出△AB′C′;
(2)計算線段AB在變換到AB′的過程中掃過的區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸交于點A(﹣2,0),點B(4,0),與y軸交于點C(0,8),連接BC,又已知位于y軸右側(cè)且垂直于x軸的動直線l,沿x軸正方向從O運動到B(不含O點和B點),且分別交拋物線、線段BC以及x軸于點P,D,E.
(1)求拋物線的表達式;
(2)連接AC,AP,當(dāng)直線l運動時,求使得△PEA和△AOC相似的點P的坐標(biāo);
(3)作PF⊥BC,垂足為F,當(dāng)直線l運動時,求Rt△PFD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C點在⊙O上,AD平分角∠BAC交⊙O于D,過D作直線AC的垂線,交AC的延長線于E,連接BD,CD.
(1)求證:BD=CD;
(2)求證:直線DE是⊙O的切線;
(3)若DE=,AB=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?
(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,對角線與交于點,,,點是對角線上一點(可與,重合),以點為圓心,為半徑作(其中).
(1)如圖1,當(dāng)點與重合,且時,過點,分別作的切線,切點分別為,.求證:;
(2)如圖2,當(dāng)點與點重合,且在菱形內(nèi)部時(不含邊界),求的取值范圍;
(3)當(dāng)點為或的內(nèi)心時,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開學(xué)初期,天氣炎熱,水杯需求量大.雙福育才中學(xué)門口某超市購進一批水杯,其中A種水杯進價為每個15元,售價為每個25元;B種水杯進價為每個12元,售價為每個20元
(1)該超市平均每天可售出60個A種水杯,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),A種水杯單價每降低1元,則平均每天的銷量可增加10個.為了盡量讓學(xué)生得到更多的優(yōu)惠,某天該超市將A種水杯售價調(diào)整為每個m元,結(jié)果當(dāng)天銷售A種水杯獲利630元,求m的值.
(2)該超市準(zhǔn)備花費不超過1600元的資金,購進A、B兩種水杯共120個,其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請為該超市設(shè)計獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建國家級衛(wèi)生城區(qū),某社區(qū)在九月份購買了甲、乙兩種綠色植物共1100盆,共花費了27000元.已知甲種綠色植物每盆20元,乙種綠色植物每盆30元.
(1)該社區(qū)九月份購買甲、乙兩種綠色植物各多少盆?
(2)十月份,該社區(qū)決定再次購買甲、兩種綠色植物.已知十月份甲種綠色植物每盆的價格比九月份的價格優(yōu)惠元,十月份乙種綠色植物每盆的價格比九月份的價格優(yōu)惠.因創(chuàng)衛(wèi)需要,該社區(qū)十月份購買甲種綠色植物的數(shù)量比九月份的數(shù)量增加了,十為份購買乙種綠色植物的數(shù)量比九月份的數(shù)量增加了.若該社區(qū)十月份的總花費與九月份的總花費恰好相同,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com