如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),弦CE⊥AB于點(diǎn)F,過點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.給出下列結(jié)論:
①∠BAD=∠ABC;
②GP=GD;
③點(diǎn)P是△ACQ的外心;
④AP·AD=CQ·CB.
其中正確的是________(寫出所有正確結(jié)論的序號(hào)).
解:∠BAD與∠ABC不一定相等,選項(xiàng)①錯(cuò)誤; 連接BD,如圖所示: ∵GD為圓O的切線, ∴∠GDP=∠ABD, 又AB為圓O的直徑,∴∠ADB=90°, ∵CE⊥AB,∴∠AFP=90°, ∴∠ADB=∠AFP,又∠PAF=∠BAD, ∴△APF∽△ABD, ∴∠ABD=∠APF,又∠APF=∠GPD, ∴∠GDP=∠GPD, ∴GP=GD,選項(xiàng)②正確; ∵直徑AB⊥CE, ∴A為的中點(diǎn),即=, 又C為的中點(diǎn),∴=, ∴=, ∴∠CAP=∠ACP, ∴AP=CP, 又AB為圓O的直徑,∴∠ACQ=90°, ∴∠PCQ=∠PQC, ∴PC=PQ, ∴AP=PQ,即P為Rt△ACQ斜邊AQ的中點(diǎn), ∴P為Rt△ACQ的外心,選項(xiàng)③正確; 連接CD,如圖所示: ∵=, ∴∠B=∠CAD,又∠ACQ=∠BCA, ∴△ACQ∽△BCA, ∴=,即AC2=CQ·CB, ∵=, ∴∠ACP=∠ADC,又∠CAP=∠DAC, ∴△ACP∽△ADC, ∴=,即AC2=AP·AD, ∴AP·AD=CQ·CB,選項(xiàng)④正確, 則正確的選項(xiàng)序號(hào)有②③④. |
切線的性質(zhì);圓周角定理;三角形的外接圓與外心;相似三角形的判定與性質(zhì). |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com