【題目】閱讀下面材料:

已知實數(shù)m,n滿足(2m3+n3+1)(2m3+n3-1)=80,試求2m3+n3的值

解:設2m3+n3=t,則原方程變?yōu)?/span>(t+1)(t-1)=80,整理得t2-1=80,t2=81, t=±9,所以2m3+n3=±9

上面這種方法稱為換元法,把其中某些部分看成一個整體,并用新字母代替(即換元),則能使復雜的問題簡單化.

根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.

已知實數(shù)xy滿足(4x2+4y2+3)(4x2+4y2-3)=27,求x2+y2的值.

【答案】

【解析】

t=x2+y2t≥0),則原方程轉(zhuǎn)化為(4t+3)(4t-3=27,然后解該方程即可.

t=x2+y2(t≥0),則原方程轉(zhuǎn)化為(4t+3)(4t-3)=27,

整理,得16t2-9=27,

所以t2=

t≥0·

t=

x2+y2的值是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了滿足師生的閱讀需求,某校圖書館藏書總量由2017萬冊增加到2019萬冊.

(1)求該校圖書館這兩年藏書總量的年均增長率;

(2)經(jīng)統(tǒng)計知:在這兩年新增加的圖書中,中外古典名著所占的百分率恰好等于這兩年藏書總量的年均增長率,2019年中外古典名著冊數(shù)占藏書總量的,而在2017年中外古典名著冊數(shù)僅占當年藏書總量的,請求出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點和點,與軸交于點.

1)求此拋物線的解析式;

2)若點是直線下方的拋物線上一動點(不點,重合),過點軸的平行線交直線于點,設點的橫坐標為.

①用含的代數(shù)式表示線段的長;

②連接,,求的面積最大時點的坐標;

3)設拋物線的對稱軸與交于點,點是拋物線的對稱軸上一點,軸上一點,是否存在這樣的點和點,使得以點、、、為頂點的四邊形是菱形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸正半軸相交,其頂點坐標為,下列結論:;②;③;④.其中正確的有______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線過點,且與直線交于B、C兩點,點B的坐標為

1)求拋物線的解析式;

2)點D為拋物線上位于直線上方的一點,過點D軸交直線于點E,點P為對稱軸上一動點,當線段的長度最大時,求的最小值;

3)設點M為拋物線的頂點,在y軸上是否存在點Q,使?若存在,求點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.

1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關系式;

2)求銷售單價為多少元時,該文具每天的銷售利潤最大;最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】開學初,我縣某校開展新學期、新征程,新氣象入學系列教育活動,訓練兩天后,為了在合唱中給某班學生恰當?shù)胤峙渎暡浚撔R魳方處熇罾蠋熾S機抽取學生試唱,根據(jù)試唱情況把所抽學生分成A、BC、D四種聲部等級,并根據(jù)等級統(tǒng)計結果繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息完成以下問題:

1)扇形統(tǒng)計圖中D等對應的圓心角的度數(shù)是   °,補全條形統(tǒng)計圖;

2)已知A等聲部的同學有一位是男生,李老師準備從這4位同學中隨機選擇兩位同學教其他同學,請用列表法或畫樹狀圖的方法求出選中的兩名同學恰好是一男一女的概率?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖①,在矩形中,分別是上的點,且,求的值;

2)如圖②,在矩形為常數(shù)),將矩形沿折疊,使點落在邊上的點處,得到四邊形于點,連接于點,求的值;

3)在(2)的條件下,連接,當時,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+3經(jīng)過點A(﹣1,0),B3,0),與y軸交于點C.點DxD,yD)為拋物線上一個動點,其中1xD3.連接AC,BC,DB,DC

1)求該拋物線的解析式;

2)當BCD的面積等于AOC的面積的2倍時,求點D的坐標;

3)在(2)的條件下,若點Mx軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,DM,N為頂點的四邊形是平行四邊形.若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案