如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P以1cm/秒的速度沿折線BE-ED-DC運動到點C時停止,點Q以2cm/秒的速度沿BC運動到點C時停止.設(shè)P、Q同時出發(fā)t秒時,
△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:
①當(dāng)0<t≤5時,y=t2;②當(dāng)t=6秒時,△ABE≌△PQB;③cos∠CBE=;④當(dāng)t=秒時,△ABE∽△QBP;
其中正確的是( )

A.①②
B.①③④
C.③④
D.①②④
【答案】分析:根據(jù)圖(2)可以判斷三角形的面積變化分為四段,①當(dāng)點P在BE上運動,點Q到達(dá)點C時;②當(dāng)點P到達(dá)點E時,點Q靜止于點C,從而得到BC、BE的長度;③點P到達(dá)點D時,點Q靜止于點C;④當(dāng)點P在線段CD上,點Q仍然靜止于點C時.
解答:解:
根據(jù)圖(2)可得,當(dāng)點P到達(dá)點E時點Q到達(dá)點C,
∵點P、Q的運動的速度分別是1cm/秒、2cm/秒
∴BC=BE=10,
∴AD=BC=10.
又∵從M到N的變化是4,
∴ED=4,
∴AE=AD-ED=10-4=6.
∵AD∥BC,
∴∠1=∠2,
∴cos∠1=cos∠2===
故③錯誤;
如圖1,過點P作PF⊥BC于點F,
∵AD∥BC,
∴∠1=∠2,
∴sin∠1=sin∠2===,
∴PF=PB•sin∠1=t,
∴當(dāng)0<t≤5時,y=BQ•PF=×2t×t=t2,故①正確;
如圖3,當(dāng)t=6秒時,點P在BE上,點Q靜止于點C處.
在△ABE與△PQB中,,
∴△ABE≌△PQB(SAS).
故②正確;
如圖4,當(dāng)t=秒時,點P在CD上,此時,PD=-BE-ED=-10-4=,
PQ=CD-PD=8-=,
==,==,
=
又∵∠A=∠Q=90°,
∴△ABE∽△QBP,故④正確.
綜上所述,正確的結(jié)論是①②④.
故選D.
點評:本題考查了動點問題的函數(shù)圖象,根據(jù)圖(2)判斷出點P到達(dá)點E用了10s,點Q到達(dá)點C用了5s是解題的關(guān)鍵,也是本題的突破口.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷城區(qū)三模)如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P沿折線BE-ED-DC運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒.設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分).則下列結(jié)論錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•荊州)如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P沿折線BE-ED-DC運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒.設(shè)P、Q同發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5;②cos∠ABE=
3
5
;③當(dāng)0<t≤5時,y=
2
5
t2;④當(dāng)t=
29
4
秒時,△ABE∽△QBP;其中正確的結(jié)論是
①③④
①③④
(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1)所示,E為矩形ABCD的邊BC上一點,動點P,Q同時從點B出發(fā),點P沿折線BE-ED-DC運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒.設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5;②cos∠ABE=
3
5
;③當(dāng)0<t≤5時,y=
2
5
t2
;④當(dāng)t=
29
4
秒時,△ABE∽△QBP;其中正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•杭州一模)如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P以1cm/秒的速度沿折線BE-ED-DC運動到點C時停止,點Q以2cm/秒的速度沿BC運動到點C時停止.設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖;
(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:
①當(dāng)0<t≤5時,y=
4
5
t2;②當(dāng)t=6秒時,△ABE≌△PQB;③cos∠CBE=
1
2
;④當(dāng)t=
29
2
秒時,△ABE∽△QBP;
其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖北荊門卷)數(shù)學(xué)(帶解析) 題型:填空題

如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P沿折線BE﹣ED﹣DC運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒.設(shè)P、Q同發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5;②cos∠ABE=;③當(dāng)0<t≤5時,y=t2;④當(dāng)t=秒時,△ABE∽△QBP;其中正確的結(jié)論是        (填序號).

查看答案和解析>>

同步練習(xí)冊答案