【題目】如圖,△OAB中,∠ABO=90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸正半軸上,若雙曲線y=(x>0)與△OAB的邊AO、AB分別交于點(diǎn)C、D,點(diǎn)C為AO的中點(diǎn),連接OD、CD.若S△OBD=3,則S△OCD為( 。
A.3B.4C.D.6
【答案】C
【解析】
根據(jù)反比例函數(shù)關(guān)系式與面積的關(guān)系得S△COE=S△BOD=3,由C是OA的中點(diǎn)得S△ACD=S△COD,由CE∥AB,可知△COE∽△AOB,由面積比是相似比的平方得,求出△ABC的面積,從而求出△AOD的面積,得出結(jié)論.
解:過C作CE⊥OB于E,
∵點(diǎn)C、D在雙曲線y=(x>0)上,
∴S△COE=S△BOD,
∵S△OBD=3,
∴S△COE=3,
∵CE∥AB,
∴△COE∽△AOB,
∴=,
∵C是OA的中點(diǎn),
∴OA=2OC,
∴=,
∴S△AOB=4×3=12,
∴S△AOD=S△AOB﹣S△BOD=12﹣3=9,
∵C是OA的中點(diǎn),
∴S△ACD=S△COD,
∴S△COD=,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為獎(jiǎng)勵(lì)學(xué)習(xí)之星,準(zhǔn)備在某商店購買A、B兩種文具作為獎(jiǎng)品,已知一件A種文具的價(jià)格比一件B種文具的價(jià)格便宜5元,且用600元買A種文具的件數(shù)是用400元買B種文具的件數(shù)的2倍.
(1)求一件A種文具的價(jià)格;
(2)根據(jù)需要,該校準(zhǔn)備在該商店購買A、B兩種文具共150件.
①求購買A、B兩種文具所需經(jīng)費(fèi)W與購買A種文具的件數(shù)a之間的函數(shù)關(guān)系式;
②若購買A種文具的件數(shù)不多于B種文具件數(shù)的2倍,且計(jì)劃經(jīng)費(fèi)不超過2750元,求有幾種購買方案,并找出經(jīng)費(fèi)最少的方案,及最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)教研部門對(duì)本區(qū)初二年級(jí)的學(xué)生進(jìn)行了一次隨機(jī)抽樣問卷調(diào)查,其中有這樣一個(gè)問題:老師在課堂上放手讓學(xué)生提問和表達(dá)( )
A.從不 B.很少 C.有時(shí) D.常常 E.總是
答題的學(xué)生在這五個(gè)選項(xiàng)中只能選擇一項(xiàng).下面是根據(jù)學(xué)生對(duì)該問題的答卷情況繪制的兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)該區(qū)共有 名初二年級(jí)的學(xué)生參加了本次問卷調(diào)查;
(2)請(qǐng)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,“總是”的圓心角為 .(精確到度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠ABC=∠ADC.則下列結(jié)論:①BC∥AD;②∠EAC+∠HCF=180°;③若AD平分∠EAC,則CF平分∠HCG;④S四邊形ABCD=2S△ABC,其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計(jì)共抽查了 名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從謝家集到田家庵有3路,121路,26路三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從謝家集到田家庵的用時(shí)時(shí)間,在每條線路上隨機(jī)選取了450個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:早高峰期間,乘坐______(填“3路”,“121路”或“26路”)線路上的公交車,從謝家集到田家庵“用時(shí)不超過50分鐘”的可能性最大.
用時(shí) | 合計(jì)(頻次) | |||
線路 | ||||
3路 | 260 | 167 | 23 | 450 |
121路 | 160 | 166 | 124 | 450 |
26路 | 50 | 122 | 278 | 450 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x-2)2-9經(jīng)過點(diǎn)P(6,7),與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線AP與y軸交于點(diǎn)D,拋物線對(duì)稱軸與x軸交于點(diǎn)E.
(1)求拋物線的解析式;
(2)過點(diǎn)E任作一條直線l(點(diǎn)B、C分別位于直線l的異側(cè)),設(shè)點(diǎn)C到直線的距離為m,點(diǎn)B到直線l的距離為n,求m+n的最大值;
(3)y軸上是否存在點(diǎn)Q,使∠QPD=∠DEO,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,位于第二象限的點(diǎn)在反比例函數(shù)的圖像上,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,直線經(jīng)過點(diǎn),且與反比例函數(shù)的圖像交于點(diǎn).
(1)當(dāng)點(diǎn)的橫坐標(biāo)是-2,點(diǎn)坐標(biāo)是時(shí),分別求出的函數(shù)表達(dá)式;
(2)若點(diǎn)的橫坐標(biāo)是點(diǎn)的橫坐標(biāo)的4倍,且的面積是16,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com