精英家教網(wǎng)如圖,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長(zhǎng)為12,則PD+PE+PF=( 。
A、8B、6C、4D、3
分析:可過(guò)點(diǎn)P作平行四邊形PGBD,EPHC,進(jìn)而利用平行四邊形的性質(zhì)及等邊三角形的性質(zhì)即可求解此題.
解答:精英家教網(wǎng)解:延長(zhǎng)EP、FP分別交AB、BC于G、H,
則由PD∥AB,PE∥BC,PF∥AC,可得,
四邊形PGBD,EPHC是平行四邊形,
∴PG=BD,PE=HC,
又△ABC是等邊三角形,
又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,
∴PF=PG=BD,PD=DH,
又△ABC的周長(zhǎng)為12,
∴PD+PE+PF=DH+HC+BD=BC=
1
3
×12=4,
故應(yīng)選C.
點(diǎn)評(píng):本題主要考查了平行四邊形的判定及性質(zhì)以及等邊三角形的判定及性質(zhì),應(yīng)熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,⊙O過(guò)點(diǎn)B,C,且與BA,CA的延長(zhǎng)線分別交于點(diǎn)D,E,弦DF精英家教網(wǎng)∥AC,EF的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,△ABC是等邊三角形,過(guò)AB邊上一點(diǎn)D作BC的平行線交AC于E,則△ADE的三個(gè)內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點(diǎn),∠BAD=15°,將△ABD繞點(diǎn)A點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)后到達(dá)△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案