【題目】自主學(xué)習(xí),請(qǐng)閱讀下列解題過(guò)程.
解一元二次不等式:x2﹣5x>0.
解:設(shè)x2﹣5x=0,解得:x1=0,x2=5,則拋物線(xiàn)y=x2﹣5x與x軸的交點(diǎn)坐標(biāo)為(0,0)和(5,0).畫(huà)出二次函數(shù)y=x2﹣5x的大致圖象(如圖所示),由圖象可知:當(dāng)x<0,或x>5時(shí)函數(shù)圖象位于x軸上方,此時(shí)y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集為:x<0或x>5.
通過(guò)對(duì)上述解題過(guò)程的學(xué)習(xí),按其解題的思路和方法解答下列問(wèn)題:

(1)上述解題過(guò)程中,滲透了下列數(shù)學(xué)思想中的 . (只填序號(hào))
①轉(zhuǎn)化思想 ②分類(lèi)討論思想 ③數(shù)形結(jié)合思想
(2)一元二次不等式x2﹣5x<0的解集為
(3)用類(lèi)似的方法寫(xiě)出一元二次不等式的解集:x2﹣2x﹣3>0.

【答案】
(1)①;③
(2)0<x<5
(3)x<﹣1或x>3
【解析】解:(1)上述解題過(guò)程中,滲透了下列數(shù)學(xué)思想中的①和③;
所以答案是:①,③;(2)由圖象可知:當(dāng)0<x<5時(shí)函數(shù)圖象位于x軸下方,
此時(shí)y<0,即x2﹣5x<0,
∴一元二次不等式x2﹣5x<0的解集為:0<x<5;
所以答案是:0<x<5.(3)設(shè)x2﹣2x﹣3=0,
解得:x1=3,x2=﹣1,
∴拋物線(xiàn)y=x2﹣2x﹣3與x軸的交點(diǎn)坐標(biāo)為(3,0)和(﹣1,0).
畫(huà)出二次函數(shù)y=x2﹣2x﹣3的大致圖象(如圖所示),
由圖象可知:當(dāng)x<﹣1,或x>3時(shí)函數(shù)圖象位于x軸上方,
此時(shí)y>0,即x2﹣2x﹣3>0,
∴一元二次不等式x2﹣2x﹣3>0的解集為:x<﹣1或x>3.
所以答案是x<﹣1或x>3

【考點(diǎn)精析】利用拋物線(xiàn)與坐標(biāo)軸的交點(diǎn)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的角平分線(xiàn),DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為4028,則△EDF的面積為( 。

A. 12 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)M為直線(xiàn)AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證:

分別寫(xiě)出點(diǎn)M在如圖2和圖3所示位置時(shí),線(xiàn)段ABBM、BN三者之間的數(shù)量關(guān)系不需證明

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)EAB上,點(diǎn)DCB的延長(zhǎng)線(xiàn)上,且ED=EC,如圖,試確定線(xiàn)段AEDB的大小關(guān)系,并說(shuō)明理由”.

(1)當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),如圖1,確定線(xiàn)段AEDB的大小關(guān)系,直接寫(xiě)出結(jié)論:AE   DB

(填“>”,“<”“=”).

(2)證明你得出的以上(1),如圖2,過(guò)點(diǎn)EEFBC,交AC于點(diǎn)F.

(3)在等邊三角形ABC中,點(diǎn)E在直線(xiàn)AB上,點(diǎn)D在直線(xiàn)BC上,且ED = EC.若ABC的邊長(zhǎng)為1,AE = 2,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AD是∠BAC的平分線(xiàn),E、F分別為AB、AC上的點(diǎn),且∠EDF+EAF=180°,求證DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊△ABC的高為6,在這個(gè)三角形所在的平面內(nèi)有一點(diǎn)P,若點(diǎn)P到直線(xiàn)AB的距離是1,點(diǎn)P到直線(xiàn)AC的距離是3,則點(diǎn)P到直線(xiàn)BC的距離可能是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).

(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線(xiàn)上,且SAOP=4SBOC , 求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線(xiàn)段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線(xiàn)于點(diǎn)D,求線(xiàn)段DQ長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn),我們把點(diǎn)叫做點(diǎn)的衍生點(diǎn).已知點(diǎn)的衍生點(diǎn)為,點(diǎn)的衍生點(diǎn)為,點(diǎn)的衍生點(diǎn)為這樣依次得到點(diǎn)若點(diǎn)的坐標(biāo)為,若點(diǎn)在第四象限,則范圍分別為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABCAC于點(diǎn)D,點(diǎn)M,N分別是BDBC邊上的動(dòng)點(diǎn),則MN+MC的最小值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案