【題目】由于持續(xù)高溫和連日無雨,某水庫(kù)的蓄水量隨時(shí)間的增加而減少,已知原有蓄水量y1(萬(wàn)m3)與干旱持續(xù)時(shí)間x(天)的關(guān)系如圖中線段l1所示,針對(duì)這種干旱情況,從第20天開始向水庫(kù)注水,注水量y2(萬(wàn)m3)與時(shí)間x(天)的關(guān)系如圖中線段l2所示(不考慮其它因素).

(1)求原有蓄水量y1(萬(wàn)m3)與時(shí)間x(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時(shí)的水庫(kù)總蓄水量.

(2)求當(dāng)0≤x≤60時(shí),水庫(kù)的總蓄水量y(萬(wàn)m3)與時(shí)間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬(wàn)m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時(shí)x的范圍.

【答案】(1)y1=20x+1200,x=20時(shí),y1=800;(2)當(dāng)0x20時(shí),y=20x+1200,當(dāng)20<x60時(shí),y=5x+700.

15x40.

【解析】

試題分析:(1) 根據(jù)(0,1200),(60,0)兩點(diǎn)求出y1與x的關(guān)系式,把x=20代入可求出水庫(kù)總蓄水量;(2)分兩種情況:當(dāng)0x20時(shí),y=y1,當(dāng)20<x60時(shí),y=y1+y2;并計(jì)算分段函數(shù)中y900時(shí)對(duì)應(yīng)的x的取值.

試題解析:(1)設(shè)y1=kx+b,把(0,1200)和(60,0)代入到y(tǒng)1=kx+b得:, 解得,

y1=20x+1200,當(dāng)x=20時(shí),y1=20×20+1200=800,(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入到y(tǒng)2=kx+b中得:, 解得,y2=25x500,當(dāng)0x20時(shí),y=20x+1200,

當(dāng)20<x60時(shí),y=y1+y2=20x+1200+25x500=5x+700,y900,則5x+700900,x40,

當(dāng)y1=900時(shí),900=20x+1200,x=15,發(fā)生嚴(yán)重干旱時(shí)x的范圍為:15x40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有(

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程x2﹣2x﹣5=0時(shí),原方程應(yīng)變形為(
A.(x+1)2=6
B.(x+2)2=9
C.(x﹣1)2=6
D.(x﹣2)2=9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明四邊形中至少有一個(gè)角是鈍角或直角,應(yīng)先假設(shè)(

A.每一個(gè)角都是鈍角或直角B.有兩個(gè)角是鈍角或直角

C.沒有一個(gè)角是鈍角或直角D.有兩個(gè)或兩個(gè)以上的角是鈍角或直角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+2xa+c經(jīng)過A(﹣4,0),B(0,4)兩點(diǎn),與x軸交于另一點(diǎn)C,直線y=x+5與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.

(1)求拋物線的解析式;

(2)點(diǎn)P是第二象限拋物線上的一個(gè)動(dòng)點(diǎn),連接EP,過點(diǎn)E作EP的垂線l,在l上截取線段EF,使EF=EP,且點(diǎn)F在第一象限,過點(diǎn)F作FM⊥x軸于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段FM的長(zhǎng)度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,過點(diǎn)E作EH⊥ED交MF的延長(zhǎng)線于點(diǎn)H,連接DH,點(diǎn)G為DH的中點(diǎn),當(dāng)直線PG經(jīng)過AC的中點(diǎn)Q時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地一天的最高氣溫是8℃,最低氣溫是﹣2℃,則該地這天的溫差是(
A.6℃
B.﹣6℃
C.10℃
D.﹣10℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ΔABC中,∠B =∠CBD=CF,BE=CD,∠EDF=α,則下列結(jié)論正確的是( )

A. 2α+∠A=90° B. 2α+∠A=180°

C. α+∠A=90° D. α+∠A=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣x+b與拋物線的另一個(gè)交點(diǎn)為D.

(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;

(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);

(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)D后停止,問當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中所用時(shí)間最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】使用計(jì)算器計(jì)算各式:6×7=  ,66×67=  ,666×667=  ,6 666×6 667=  

(1)根據(jù)以上結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?

(2)依照你發(fā)現(xiàn)的規(guī)律,不用計(jì)算器,你能直接寫出666 666×666 667的結(jié)果嗎?請(qǐng)你試一試.

查看答案和解析>>

同步練習(xí)冊(cè)答案