(2008•梅州)如圖所示,E是正方形ABCD的邊AB上的動點,EF⊥DE交BC于點F.
(1)求證:△ADE∽△BEF;
(2)設正方形的邊長為4,AE=x,BF=y.當x取什么值時,y有最大值?并求出這個最大值.

【答案】分析:(1)這兩個三角形中,已知的條件有∠A=∠B=90°,那么只要得出另外兩組對應角相等即可得出兩三角形相似,因為∠DEA+∠FEB=180-90=90°,而∠ADE+∠DEA=90°,因此∠ADE=∠FEB,同理可得出∠BFE=∠AED,那么就構成了兩三角形相似的條件;
(2)可用x表示出BE的長,然后根據(1)中三角形ADE和FEB相似可得出關于AD,AE,BE,BF的比例關系式,然后就能得出一個關于x,y的函數(shù)關系式.根據函數(shù)的性質即可得出y的最大值及相應的x的值.
解答:(1)證明:∵ABCD是正方形,
∴∠DAE=∠FBE=90°.
∴∠ADE+∠DEA=90°.
又∵EF⊥DE,∴∠AED+∠FEB=90°,
∴∠ADE=∠FEB,
∴△ADE∽△BEF.

(2)解:由(1)△ADE∽△BEF,AD=4,BE=4-x,得:
得:y=(-x2+4x)=[-(x-2)2+4]=-(x-2)2+1,
所以當x=2時,y有最大值,y的最大值為1.
點評:本題考查了正方形的性質,相似三角形的性質以及二次函數(shù)的應用等知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(10)(解析版) 題型:解答題

(2008•梅州)如圖所示,直線L與兩坐標軸的交點坐標分別是A(-3,0),B(0,4),O是坐標系原點.
(1)求直線L所對應的函數(shù)的表達式;
(2)若以O為圓心,半徑為R的圓與直線L相切,求R的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省保山市隆陽區(qū)中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•梅州)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為x軸,過D且垂直于AB的直線為y軸建立平面直角坐標系.
(1)求∠DAB的度數(shù)及A、D、C三點的坐標;
(2)求過A、D、C三點的拋物線的解析式及其對稱軸L;
(3)若P是拋物線的對稱軸L上的點,那么使△PDB為等腰三角形的點P有幾個?(不必求點P的坐標,只需說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源:2009年云南省楚雄州雙柏縣中考數(shù)學模擬試卷2(教研室 郎紹波)(解析版) 題型:解答題

(2008•梅州)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為x軸,過D且垂直于AB的直線為y軸建立平面直角坐標系.
(1)求∠DAB的度數(shù)及A、D、C三點的坐標;
(2)求過A、D、C三點的拋物線的解析式及其對稱軸L;
(3)若P是拋物線的對稱軸L上的點,那么使△PDB為等腰三角形的點P有幾個?(不必求點P的坐標,只需說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣東省梅州市中考數(shù)學試卷(解析版) 題型:解答題

(2008•梅州)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為x軸,過D且垂直于AB的直線為y軸建立平面直角坐標系.
(1)求∠DAB的度數(shù)及A、D、C三點的坐標;
(2)求過A、D、C三點的拋物線的解析式及其對稱軸L;
(3)若P是拋物線的對稱軸L上的點,那么使△PDB為等腰三角形的點P有幾個?(不必求點P的坐標,只需說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣東省梅州市中考數(shù)學試卷(解析版) 題型:解答題

(2008•梅州)如圖所示,直線L與兩坐標軸的交點坐標分別是A(-3,0),B(0,4),O是坐標系原點.
(1)求直線L所對應的函數(shù)的表達式;
(2)若以O為圓心,半徑為R的圓與直線L相切,求R的值.

查看答案和解析>>

同步練習冊答案