【題目】“三等分角”大約是在公元前五世紀(jì)由古希臘人提出來的.借助如圖1所示的“三等分角儀”能三等分任一角.其抽象示意圖如圖2所示,由兩根有槽的棒,組成,兩根棒在點(diǎn)相連并可繞轉(zhuǎn)動(dòng).點(diǎn)固定,,點(diǎn),可在槽中滑動(dòng),
(1)求證:.
(2)若,
①求的度數(shù);
②求點(diǎn)到的距離.
(參考數(shù)據(jù):,,,,,)
【答案】(1)證明見解析;(2)①; ②點(diǎn)到的距離約為.
【解析】
(1)利用等邊對(duì)等角結(jié)合三角形外角的性質(zhì)即可證明;
(2)①作于點(diǎn),根據(jù)等腰三角形 “三線合一”的性質(zhì)求得OF的長(zhǎng),利用余弦函數(shù)的定義即可求得∠BOE的值,從而求得答案;
②作于點(diǎn),利用正弦函數(shù)的定義即可求得答案.
(1)∵,
∴,
∵,
∴,
∴
;
(2)①過點(diǎn)作于點(diǎn),如圖:
∵,
∴,
∴,
∵,
∴,
由(1)可知;
②過點(diǎn)作于點(diǎn),
∵,
∴,
解得,
即點(diǎn)到的距離約為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E,F分別在AB,CD上,且,連接EF交BD于點(diǎn)O連接AO.若,,則的度數(shù)為( )
A.50°B.55°C.65°D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,I是內(nèi)心,AB=AC,O是AB邊上一點(diǎn),以點(diǎn)O為圓心,OB為半徑的⊙O經(jīng)過點(diǎn)I.
(1)求證:AI是⊙O的切線;
(2)如圖2,連接CI交AB于點(diǎn)E,交⊙O于點(diǎn)F,若tan∠IBC=,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,若將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)C′,點(diǎn)D為A′B的中點(diǎn),連接AD.則點(diǎn)A的運(yùn)動(dòng)路徑與線段AD、A′D圍成的陰影部分面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,已知線段,現(xiàn)要在該網(wǎng)格內(nèi)再確定格點(diǎn)和格點(diǎn),某數(shù)學(xué)探究小組在探究時(shí)發(fā)現(xiàn)以下結(jié)論:以下結(jié)論不正確的是( )
A.將線段平移得到線段,使四邊形為正方形的有2種;
B.將線段平移得到線段,使四邊形為菱形的(正方形除外)有3種;
C.將線段平移得到線段,使四邊形為矩形的(正方形除外)有兩種;
D.不存在以為對(duì)角線的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市中心城區(qū)居民用水實(shí)行以戶為單位的三級(jí)階梯收費(fèi)辦法:
第Ⅰ級(jí):居民每戶每月用水不超過18噸時(shí),每噸收水費(fèi)3元;
第Ⅱ級(jí):居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級(jí)標(biāo)準(zhǔn)收費(fèi),超過的部分每噸收水費(fèi)4元;
第Ⅲ級(jí):居民每戶每月用水超過25噸,未超過25噸的部分按照第Ⅰ、Ⅱ級(jí)標(biāo)準(zhǔn)收費(fèi),超過的部分每噸收水費(fèi)6元.
現(xiàn)把上述水費(fèi)階梯收費(fèi)辦法稱為方案①;假設(shè)還存在方案②:居民每戶月用水一律按照每噸4元的標(biāo)準(zhǔn)繳費(fèi).
設(shè)一戶居民月用水x噸.
(Ⅰ)根據(jù)題意填表:
(Ⅱ)設(shè)方案①應(yīng)繳水費(fèi)為元,方案②應(yīng)繳水費(fèi)為元,分別求,關(guān)于x的函數(shù)解析式;
(Ⅲ)當(dāng)時(shí),通過計(jì)算說明居民選擇哪種付費(fèi)方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,已知點(diǎn)和點(diǎn)的坐標(biāo)分別為,,將繞點(diǎn)按順時(shí)針分別旋轉(zhuǎn),得到,,拋物線經(jīng)過點(diǎn),,;拋物線經(jīng)過點(diǎn),,.
(1)求拋物線的解析式.
(2)如果點(diǎn)是直線上方拋物線上的一個(gè)動(dòng)點(diǎn).
①若 ,求點(diǎn)的坐標(biāo);
②如圖,過點(diǎn)作軸的垂線交直線于點(diǎn),交拋物線于點(diǎn),記,求與的函數(shù)關(guān)系式.當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點(diǎn),AE與BD相交于點(diǎn)F.若BC=4,∠CBD=30°,則BF的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com