【題目】如圖,在△ABC中,點OAC邊上一動點,過點OBC的平行線交∠ACB的角平分線于點E,交∠ACB的外角平分線于點F

1)求證:EOFO;

2)當(dāng)點O運動到何處時,四邊形CEAF是矩形?請證明你的結(jié)論.

3)在第(2)問的結(jié)論下,若AE3,EC4AB12,BC13,請直接寫出凹四邊形ABCE的面積為   

【答案】1)詳見解析;(2)當(dāng)點O運動到AC的中點時,四邊形CEAF是矩形,理由詳見解析;(324

【解析】

1)由平行線的性質(zhì)和角平分線的定義得出∠OEC=∠OCE,證出EOCO,同理得出FOCO,即可得出EOFO;

2)由對角線互相平分證明四邊形CEAF是平行四邊形,再由對角線相等即可得出結(jié)論;

3)先根據(jù)勾股定理求出AC,得出△ACE的面積=AE×EC,再由勾股定理的逆定理證明△ABC是直角三角形,得出△ABC的面積=ABAC,凹四邊形ABCE的面積=△ABC的面積﹣△ACE的面積,即可得出結(jié)果.

1)證明:∵EFBC,

∴∠OEC=∠BCE

CE平分∠ACB,

∴∠BCE=∠OCE

∴∠OEC=∠OCE,

EOCO,

同理:FOCO

EOFO;

2)解:當(dāng)點O運動到AC的中點時,四邊形CEAF是矩形;理由如下:

由(1)得:EOFO,

又∵OAC的中點,

AOCO,

∴四邊形CEAF是平行四邊形,

EOFOCO,

EOFOAOCO,

EFAC,

∴四邊形CEAF是矩形;

3)解:由(2)得:四邊形CEAF是矩形,

∴∠AEC90°,

AC5

ACE的面積=AE×EC×3×46,

122+52132,

AB2+AC2BC2,

∴△ABC是直角三角形,∠BAC90°,

∴△ABC的面積=ABAC×12×530

∴凹四邊形ABCE的面積=△ABC的面積﹣△ACE的面積=30624;

故答案為:24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊長方形的一邊,使點落在邊的點處,已知

1)求的長;

2)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點O,OP是∠BOC的平分線,EOAB于點O,F(xiàn)OCD于點O.

(1)圖中除直角外,還有其他相等的角,請寫出兩對:①______________;______________.

(2)如果∠AOD=40°,那么:

①根據(jù)__________,可得∠BOC=________;

②求∠POF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E在邊AB上,AE1,若點P為對角線BD上的一個動點,則△PAE周長的最小值是( 。

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:

問題:現(xiàn)有5個邊長為1的正方形,排列形式如圖①,請把它們分割后拼接成一個新的正方形,要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.小東同學(xué)的做法是:設(shè)新正方形的邊長為xx0),依題意,割補前后圖形的面積相等,有x25,解得,由此可知新正方形的邊長等于兩個小正方形組成的矩形對角線的長,于是,畫出如圖②所示的分割線,拼出如圖③所示的新正方形.

請你參考小東同學(xué)的做法,解決如下問題:

現(xiàn)有10個邊長為1的正方形,排列形式如圖④,請把它們分割后拼接成一個新的正方形,要求:在圖④中畫出分割線,并在圖⑤的正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.(說明:直接畫出圖形,不要求寫分析過程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點D,切線DEAC,垂足為點E.

求證:(1)ABC是等邊三角形;(2)AE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)與x軸交于A﹣1,0),B4,0)兩點,與y軸交于點C0,2),點Mmn)是拋物線上一動點,位于對稱軸的左側(cè),并且不在坐標(biāo)軸上,過點Mx軸的平行線交y軸于點Q,交拋物線于另一點E,直線BMy軸于點F

1)求拋物線的解析式,并寫出其頂點坐標(biāo);

2)當(dāng)SMFQSMEB=13時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價進了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價不能超過批發(fā)價的2.5倍.

1)當(dāng)每個紀(jì)念品定價為3.5元時,商店每天能賣出________件;

2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )

A. 對載人航天器“神舟十號”的零部件的檢查適合采用抽樣調(diào)查的方式

B. 某市天氣預(yù)報中說“明天降雨的概率是80%”,表示明天該市有80%的地區(qū)降雨

C. 擲一枚硬幣,正面朝上的概率為

D. 0.1,0.01,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

同步練習(xí)冊答案