在一次研究性學(xué)習(xí)活動(dòng)中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動(dòng),順時(shí)針旋轉(zhuǎn)正方形EFGH,如圖所示.
(1)小組成員經(jīng)觀察、測(cè)量,發(fā)現(xiàn)在旋轉(zhuǎn)過程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時(shí)他們得到的一些猜想:
①M(fèi)E=MA;
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變.
請(qǐng)你對(duì)這三個(gè)猜想作出判斷(正確的在序號(hào)后的括號(hào)內(nèi)打上“√”,錯(cuò)誤的打上“×”):
①( 。;②(  );③( 。
(2)小組成員還發(fā)現(xiàn):(1)中的△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.請(qǐng)你指出在怎樣的位置時(shí)△EMN的面積S取得最大值.(不必證明)
(3)上面的三個(gè)猜想中若有正確的,請(qǐng)選擇其中的一個(gè)給予證明;若都是錯(cuò)誤的,請(qǐng)選擇其一說明理由.
(1)①(√);②(×);③(√).

(2)當(dāng)∠AOE=45°時(shí),△EMN的面積S取得最大值.

(3)證明:對(duì)于猜想①,連接OA、OE、AE、OD、ED.由已知得OA=OE,
∴∠OAE=∠OEA.
又∵∠OAM=∠OEM=45°,
∴∠OAE-∠OAM=∠OEA-∠OEM,即∠MAE=∠MEA.
∴ME=MA.
對(duì)于猜想③,證得OM平分∠EOA,同理ON平分∠DOE,
∴∠MOE+∠NOE=
1
2
∠AOD=
1
2
×90°=45°,即∠MON保持45°不變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,已知△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).作正方形DEFG,使點(diǎn)A,C分別在DG和DE上,連接AE,BG.
(1)試猜想線段BG和AE的數(shù)量關(guān)系,請(qǐng)直接寫出你得到的結(jié)論;
(2)將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)一定角度后(旋轉(zhuǎn)角度大于0°,小于或等于360°),如圖②,通過觀察或測(cè)量等方法判斷(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)予以證明;如果不成立,請(qǐng)說明理由;
(3)若BC=DE=2,在(2)的旋轉(zhuǎn)過程中,當(dāng)AE為最大值時(shí),求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.下列結(jié)論:
①△AED≌△DFB;②S四邊形BCDG=
3
4
CG2;③若AF=2DF,則BG=6GF.
其中正確的結(jié)論( 。
A.只有①②B.只有①③C.只有②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示的三個(gè)圓是同心圓,且AB=2,那么圖中陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將正五邊形ABCDE的C點(diǎn)固定,并依順時(shí)針方向旋轉(zhuǎn),若要使得新五邊形A′B′C′D′E′的頂點(diǎn)D′落在直線BC上,則至少要旋轉(zhuǎn)______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,方格紙中,每個(gè)小正方形的邊長(zhǎng)都是單位1,
(1)畫出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1;
(2)畫出△ABC以O(shè)為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)90°得到的△A2B2C2;
(3)判斷△CC1C2是什么三角形,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)A、B、C、D、O都在方格紙的格點(diǎn)上,若△COD是由△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)而得,則旋轉(zhuǎn)的角度為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知△AOB是正三角形,OC⊥OB,OC=OB,將△OAB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),使得OA與OC重合,得到△OCD,則旋轉(zhuǎn)的角度是( 。
A.150°B.120°C.90°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)A的坐標(biāo)為(3,3),點(diǎn)B的坐標(biāo)為(4,0).
(1)請(qǐng)?jiān)谥苯亲鴺?biāo)系中畫出△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后的圖形△A′B′C;
(2)點(diǎn)A′的坐標(biāo)為(______),點(diǎn)B′的坐標(biāo)為(______).

查看答案和解析>>

同步練習(xí)冊(cè)答案