【題目】甲、乙兩人從 兩地同時(shí)出發(fā),甲騎自行車(chē),乙騎摩托車(chē),沿同一條直線公路相向勻速行駛.出發(fā)后經(jīng)小時(shí)兩人相遇.已知在相遇時(shí)乙比甲多行駛了千米,且摩托車(chē)的速度是自行車(chē)速度的

1)問(wèn)甲、乙行駛的速度分別是多少?

2)甲、乙行駛多少小時(shí),兩車(chē)相距千米?

【答案】(1) 甲、乙行駛的速度分別是每小時(shí)15千米、45千米;(2) 甲、乙行駛小時(shí),兩車(chē)相距30千米

【解析】試題分析:

1)設(shè)甲行駛的速度為每小時(shí)千米,可得乙行駛的速度為每小時(shí)千米,則相遇時(shí)甲行駛路程為千米,乙行駛路程為千米,根據(jù)相遇時(shí),乙比甲多行駛90千米即可列出方程,解方程即可求得兩人的速度;

2根據(jù)(1)小題求得的結(jié)果,可知A、B兩地相距180千米,根據(jù)題意當(dāng)兩人相距30千米時(shí),兩人行駛的路程之和為(180-30)或(180+30),由此設(shè)兩人行駛小時(shí)后相距30千米,分兩種情況列出方程,解方程即可得到所求答案.

試題解析

1)設(shè)甲行駛的速度是每小時(shí)千米,根據(jù)題意,得:

,解得: ,

∴甲、乙行駛的速度分別是每小時(shí)15千米、45千米;

2)由第(1)小題,可得A,B兩地相距45×315×3=180(千米).

設(shè)甲、乙行駛小時(shí)后,兩車(chē)相距30千米,根據(jù)題意可得兩車(chē)行駛的總路程是(18030)千米或(18030)千米,則:

解得:

∴甲、乙行駛小時(shí),兩車(chē)相距30千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某品牌A,B兩種型號(hào)冰箱的銷(xiāo)售情況,王明對(duì)某專(zhuān)賣(mài)店一到七月份的銷(xiāo)售情況進(jìn)行了統(tǒng)計(jì),并將得到的數(shù)據(jù)制成如下統(tǒng)計(jì)表:

月份

一月

二月

三月

四月

五月

六月

七月

A型銷(xiāo)

售量(臺(tái))

10

14

17

16

13

14

14

B型銷(xiāo)

售量(臺(tái))

6

10

14

15

16

17

20

完成下表:

平均數(shù)(臺(tái))

中位數(shù)(臺(tái))

方差

A型銷(xiāo)售量

14

B型銷(xiāo)售量

14

18.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是市民廣場(chǎng)到解百地下通道的手扶電梯示意圖.其中AB、CD分別表示地下通道、市民廣場(chǎng)電梯口處地面的水平線,∠ABC=135°,BC的長(zhǎng)約是 m,則乘電梯從點(diǎn)B到點(diǎn)C上升的高度h是 m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),已知ABC三個(gè)定點(diǎn)坐標(biāo)分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).

(1)畫(huà)出ABC關(guān)于x軸對(duì)稱的△A1B1C1,點(diǎn)A,B,C的對(duì)稱點(diǎn)分別是點(diǎn)A1、B1、C1,直接寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);

(2)畫(huà)出點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)C2,連接C1C2,CC2,C1C,△CC1C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在下列各圖中,點(diǎn) O 為直線 AB 上一點(diǎn),∠AOC=60°,直角三角板的直角頂點(diǎn)放在點(diǎn)處.

(1)如圖 1,三角板一邊 OM在射線 OB 上,另一邊 ON在直線 AB的下方,求∠BOC的度數(shù),∠CON 的度數(shù);

(2)如圖 2,三角板一邊OM恰好在∠BOC的角平分線OE上,另一邊ON在直線 AB的下方,求此時(shí)∠BON 的度數(shù);

(3)請(qǐng)從下列(A),(B)兩題中任選一題作答. 我選擇哪一題.

(A)在圖 2 中,延長(zhǎng)線段 NO 得到射線 OD,如圖 3,求∠AOD 的度數(shù);寫(xiě)出∠DOC 與∠BON 的數(shù)量關(guān)系;

(B)如圖 4,MN⊥AB,ON 在∠AOC 的內(nèi)部,若另一邊 OM 在直線 AB 的下方, 求∠COM+∠AON 的度數(shù);∠AOM﹣∠CON 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=6,EBA延長(zhǎng)線的一點(diǎn),P∠EAC的平分線上一個(gè)動(dòng)點(diǎn),當(dāng)△APC是以AC為腰的等腰三角形時(shí),△APC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)等腰直角△ABC△CDE中,∠ACB=∠DCE=90°.

(1)觀察猜想如圖1,點(diǎn)EBC上,線段AEBD的數(shù)量關(guān)系,位置關(guān)系

(2)探究證明把△CDE繞直角頂點(diǎn)C旋轉(zhuǎn)到圖2的位置,(1)中的結(jié)論還成立嗎?說(shuō)明理由;

(3)拓展延伸:把△CDE繞點(diǎn)C在平面內(nèi)自由旋轉(zhuǎn),若AC=BC=13,DE=10,當(dāng)A、E、D三點(diǎn)在直線上時(shí),請(qǐng)直接寫(xiě)出AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高學(xué)生書(shū)寫(xiě)漢字的能力,增強(qiáng)保護(hù)漢子的意識(shí),某校舉辦了首屆漢字聽(tīng)寫(xiě)大賽,學(xué)生經(jīng)選拔后進(jìn)入決賽,測(cè)試同時(shí)聽(tīng)寫(xiě)100個(gè)漢字,每正確聽(tīng)寫(xiě)出一個(gè)漢字得1分,本次決賽,學(xué)生成績(jī)?yōu)?/span>(分),且,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:

組別

成績(jī)(分)

頻數(shù)(人數(shù))

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請(qǐng)根據(jù)表格提供的信息,解答以下問(wèn)題:

(1)本次決賽共有 名學(xué)生參加;

(2)直接寫(xiě)出表中a= ,b= ;

(3)請(qǐng)補(bǔ)全下面相應(yīng)的頻數(shù)分布直方圖;

(4)若決賽成績(jī)不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=a(x﹣m)2+n與y軸交于點(diǎn)A,它的頂點(diǎn)為點(diǎn)B,點(diǎn)A、B關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)分別為C、D.若A、B、C、D中任何三點(diǎn)都不在一直線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x﹣2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x﹣m)2+n(m>0)的伴隨直線是y=x﹣3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x﹣m)2+n的伴隨直線是y=﹣2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△PBD是一個(gè)等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo)(用含b的代數(shù)式表示);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案