【題目】如圖,已知直線l1∥l2,直線l和直線l1、l2交于點C和D,在C、D之間有一點P,A是l1上的一點,B是l2上的一點.
(1)如果P點在C、D之間運動時,如圖(1)問∠PAC,∠APB,∠PBD之間有何關系,并說明理由.
(2)若點P在C、D兩點的外側運動時(P點與點C、D不重合),在圖(2),圖(3)中畫出圖形并探索∠PAC,∠APB,∠PBD之間的關系又是如何?并選擇其中一種情況說明理由.
【答案】(1)∠APB=∠PAC+∠PBD;
(2)當點P在C、D兩點的外側運動,且在l2下方時,∠PAC=∠PBD+∠APB.當點P在C、D兩點的外側運動,且在l1上方時,∠PBD=∠PAC+∠APB.理由見解析.
【解析】
(1)當P點在C、D之間運動時,首先過點P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根據(jù)兩直線平行,內(nèi)錯角相等,即可求得:∠APB=∠PAC+∠PBD;
(2)當點P在C、D兩點的外側運動時,由直線l1∥l2,根據(jù)兩直線平行,同位角相等與三角形外角的性質(zhì),即可求得:∠PBD=∠PAC+∠APB.
解:(1)如圖1,當P點在C、D之間運動時,∠APB=∠PAC+∠PBD.
理由如下:過點P作PE∥l1,
∵l1∥l2
∴PE∥l2∥l1,
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;
(2)如圖2,當點P在C、D兩點的外側運動,且在l2下方時,∠PAC=∠PBD+∠APB.
理由如下:∵PE∥l2∥l1,
∴∠EPA=∠PAC,
∵∠EPA=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
如圖3,當點P在C、D兩點的外側運動,且在l1上方時,∠PBD=∠PAC+∠APB.
理由如下:∵PE∥l2∥l1,
∴∠EPB=∠PBD,
∵∠EPB=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知點A(﹣3,0)、B(0,4),對△OAB連續(xù)作旋轉變換,依次得到△1、△2、△3、△4…,則△2017的直角頂點的坐標為.( 。.
A. (4032,0) B. (4032,) C. (8064,0) D. (8052, )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某班研究性學習小組在一次綜合實踐活動中發(fā)現(xiàn)如下問題:在樓底的B處測得河對岸大廈上懸掛的條幅底端D的仰角為26°,在樓頂A處測得條幅頂端C的仰角為50°.若樓AB高度為18米,條幅CD長度為46米,請你幫助他們求出樓與大廈之間的距離BE及大廈的高度CE.(參考數(shù)據(jù):sin26°≈0.44,sin50°≈0.77,tan26°≈0.49,tan50°≈1.19).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某部隊要進行一次急行軍訓練,路程為32km.大部隊先行,出發(fā)1小時后,由特種兵組成的突擊小隊才出發(fā),結果比大部隊提前20分鐘到達目的地.已知突擊小隊的行進速度是大部隊的1.5倍.
(1)求大部隊的行進速度.(列方程解應用題)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3交y軸于點C,直線l為拋物線的對稱軸,點P在第三象限且為拋物線的頂點.P到x軸的距離為 ,到y(tǒng)軸的距離為1.點C關于直線l的對稱點為A,連接AC交直線l于B.
(1)求拋物線的表達式;
(2)直線y= x+m與拋物線在第一象限內(nèi)交于點D,與y軸交于點F,連接BD交y軸于點E,且DE:BE=4:1.求直線y= x+m的表達式;
(3)若N為平面直角坐標系內(nèi)的點,在直線y= x+m上是否存在點M,使得以點O、F、M、N為頂點的四邊形是菱形?若存在,直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某次考試中,某班級的數(shù)學成績統(tǒng)計圖如下.下列說法錯誤的是( )
A. 得分在70~80分之間的人數(shù)最多
B. 該班的總人數(shù)為40
C. 得分在90~100分之間的人數(shù)最少
D. 及格(≥60分)人數(shù)是26
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點B、E、C、F在一條直線上,AB = DF,AC = DE,BE = CF.
求證: (1) △ABC ≌ △DFE ;
(2)連接AF、BD,求證:四邊形ABDF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市美化工程招標時,有甲、乙兩個工程隊投標.經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com