【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+b的圖象經(jīng)過(guò)點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1

1)求一次函數(shù)ykx+b的解析式;

2)若點(diǎn)Dy軸負(fù)半軸上,且滿(mǎn)足SCODSBOC,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).

【答案】1y=x+4;(2(0,6)

【解析】

(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),根據(jù)點(diǎn)A. C的坐標(biāo),利用待定系數(shù)法即可求出k、b的值;

(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)B的坐標(biāo),設(shè)點(diǎn)D的坐標(biāo)為(0,m)(m<0),根據(jù)三角形的面積公式結(jié)合SCODSBOC,即可得出關(guān)于m的一元一次方程,解之即可得出m的值,進(jìn)而可得出點(diǎn)D的坐標(biāo)。

(1)當(dāng)x=1時(shí),y=3x=3,

∴點(diǎn)C的坐標(biāo)為(1,3).

A(2,6)C(1,3)代入y=kx+b,

得:

解得: ,

∴一次函數(shù)y=kx+b的表達(dá)式為:y=x+4;

(2)當(dāng)y=0時(shí),有x+4=0,

解得:x=4

∴點(diǎn)B的坐標(biāo)為(4,0).

設(shè)點(diǎn)D的坐標(biāo)為(0,m)(m<0),

SCODSBOC,m=××4×3

解得:m=6,

∴點(diǎn)D的坐標(biāo)為(0,6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸的單位長(zhǎng)度為1

1)如果點(diǎn)A、D表示的數(shù)互為相反數(shù),那么點(diǎn)B表示的數(shù)是多少?

2)當(dāng)點(diǎn)B為原點(diǎn)時(shí),若存在一點(diǎn)MA點(diǎn)的距離是點(diǎn)MD點(diǎn)的距離的2倍,則點(diǎn)M所表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1 (3)(8)(6)7;

2)-30×();

3 ()÷()223

4)-42÷0.25×[5(3)2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線(xiàn)段AC上一點(diǎn),過(guò)點(diǎn)A的⊙FAB于點(diǎn)DE是線(xiàn)段BC上一點(diǎn),且ED=EB,則EF的最小值為 ( )

A. 3 B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD的邊長(zhǎng)為8,點(diǎn)E、F分別在ADCD上,AEDF2,BEAF相交于點(diǎn)G,點(diǎn)HBF的中點(diǎn),連接GH,則GH的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OB為∠AOC內(nèi)一條射線(xiàn),∠AOB的余角是它自身的兩倍.

1)求∠AOB的度數(shù);

2)射線(xiàn)OEOA開(kāi)始,在∠AOB內(nèi)以1°/s的速度繞著O點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),轉(zhuǎn)到OB停止,同時(shí)射線(xiàn)OF在∠BOC內(nèi)從OB開(kāi)始以3°/s的速度繞O點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)轉(zhuǎn)到OC停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

①若OE,OF運(yùn)動(dòng)的任一時(shí)刻,均有∠COF3BOE,求∠AOC的度數(shù);

OP為∠AOC內(nèi)任一射線(xiàn),在①的條件下,當(dāng)t10時(shí),以OP為邊所有角的度數(shù)和的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將正方形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,其余各邊均與坐標(biāo)軸平行,直線(xiàn)lyx3沿x軸的負(fù)方向以每秒1個(gè)單位的速度平移,在平移的過(guò)程中,該直線(xiàn)被正方形ABCD的邊所截得的線(xiàn)段長(zhǎng)為m,平移的時(shí)間為t(秒),mt的函數(shù)圖象如圖2所示,則圖2b的值為(

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=―ax2+2ax+c(a>0)的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,過(guò)A的直線(xiàn)y=kx+2k(k≠0)與這個(gè)二次函數(shù)圖象交于另一點(diǎn)F,與其對(duì)稱(chēng)軸交于點(diǎn)E,與y軸交于點(diǎn)D,且DE=EF

(1)求A點(diǎn)坐標(biāo);

(2)若△BDF的面積為12,求此二次函數(shù)的表達(dá)式;

(3)設(shè)二次函數(shù)圖象頂點(diǎn)為P,連接PF,PC,若∠CPF=2∠DAB,求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是直線(xiàn)AB上任一點(diǎn),射線(xiàn)OD和射線(xiàn)OE分別平分∠AOC和∠BOC.

(1)填空:與∠AOE互補(bǔ)的角有   ;

(2)若∠COD=30°,求∠DOE的度數(shù);

(3)當(dāng)∠AOD=α°時(shí),請(qǐng)直接寫(xiě)出∠DOE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案