【題目】如圖,在中,,,點出發(fā)以每秒個單位的速度在線段上從點向點運動,點同時從出發(fā)以每秒個單位的速度在線段上向點運動,連接、,設兩點運動時間為.

(1)運動   秒時,;

(2)運動多少秒時,能成立;

(3),,求的大小.(用含的式子表示)

【答案】(1)3;(2)當運動2秒時;(3)∠ADE=90°﹣α.

【解析】

(1)由題意得BD=CE=2t,則有CD=12﹣2t,AE=8﹣2t,可得出方程8-2t=(12-2t),求出方程的解即可;

(2)若ΔABD≌ΔDCE,根據(jù)全等三角形的性質(zhì)則有DC=AB=8,從而可得BD=4,繼而求得時間;

(3)△ABD≌△DCE時,有∠CDE=∠BAD,繼而可求得∠ADE=∠B,結合等腰三角形的性質(zhì)即可得∠ADE=90°﹣α.

1)由題可得,BD=CE=2t,

∴CD=12﹣2t,AE=8﹣2t,

AE=DC,時,8﹣2t=(12﹣2t),

解得t=3,

故答案為:3;

(2)∵AB=AC,

∴∠B=∠C,

若ΔABD≌ΔDCE,則有DC=AB=8,

∴BD=BC-CD=12-8=4,

此時t=2,CE=2t=4,

所以當運動2秒時,△ABD≌△DCE能成立;

(3)當△ABD≌△DCE時,∠CDE=∠BAD,

∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,

∴∠ADE=∠B.

∵∠BAC=α,AB=AC,

∴∠ADE=∠B=180°﹣α)=90°﹣α.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且AB=26m,OE⊥CD于點E.水位正常時測得OE:CD=5:24

(1)求CD的長;
(2)現(xiàn)汛期來臨,水面要以每小時4m的速度上升,則經(jīng)過多長時間橋洞會剛剛被灌滿?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某市近郊有一塊長為60米,寬為50米的矩形荒地,地方政府準備在此建一個綜合性休閑廣場,其中陰影部分為通道,通道的寬度均相等,中間的三個矩形(其中三個矩形的一邊長均為a米)區(qū)域?qū)佋O塑膠地面作為運動場地.

(1)設通道的寬度為x米,則a=(用含x的代數(shù)式表示);
(2)若塑膠運動場地總占地面積為2430平方米.請問通道的寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=5,PB=12,PC=13,若將△PAC繞點A逆時針旋轉后,得到△P′AB,求點P與點P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,現(xiàn)將直角邊沿直線折疊,使它落在斜邊上,且與重合,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系種中,點

關于軸對稱的點的坐標是:________;

關于軸對稱的點的坐標是:________;

關于原點對稱的點的坐標是:________;

將點繞原點逆時針旋轉后,得到的點的坐標是:________

將點繞原點順時針旋轉后,得到的點的坐標是:________

將點繞另一點旋轉得到點,則點的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,A(﹣2,3),B(﹣3,1),C(﹣1,2).

(1)①將△ABC向右平移4個單位長度,畫出平移后的△A1B1C1
②畫出△ABC關于x軸對稱的△A2B2C2;
③將△ABC繞原點O旋轉180°,畫出旋轉后的△A3B3C3
(2)在△A1B1C1 , △A2B2C2 , △A3B3C3中,△與△成軸對稱,對稱軸是;△與△成中心對稱,對稱中心的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,ADBE相交于點F,且AE=CD.

(1)求證:AD=BE;

(2)求∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,結論:①ac<0;②a﹣b+c<0;③b2﹣4ac≥0;④y隨x的增大而增大,其中正確的個數(shù)(

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

同步練習冊答案