【題目】如圖,在中,是邊上的動(dòng)點(diǎn),若在邊,上分別有點(diǎn),,使得,.
(1)設(shè),求(用含的代數(shù)式表示)
(2)尺規(guī)作圖:分別在邊,上確定點(diǎn),(與平行或重合),使得(請(qǐng)?jiān)趫D中作圖,保留作圖痕跡,不寫(xiě)作法)
【答案】(1)(2)見(jiàn)解析
【解析】
(1)由等腰三角形的性質(zhì)知∠ADE=(180°-∠A),∠BDF=(180°-∠B),根據(jù)∠EDF=180°-∠ADE-∠BDF=(∠A+∠B)及∠A+∠B=180°-α可得∠EDF=(180°-α)=90°-α.
(2)先作∠ACB的平分線交AB于點(diǎn)P,再過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q即可得.
(1)解:∵,
∴,
在中,
.
同理可得.
∴
.
在中,
.
∴.
(2)解:i.作∠ACB的平分線交AB于點(diǎn)P,
ii.過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q.
如圖點(diǎn),即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點(diǎn),OM=3,∠OBC和∠OCB互余,求DG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用同樣大小的黑色棋子按如圖所示的規(guī)律擺放:
(1)第5個(gè)圖形有多少顆黑色棋子?
(2)第幾個(gè)圖形有2019顆黑色棋子?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】①若2a與1-a互為相反數(shù),則a=_________.
②已知|a|=3,|b-1|=4,|a-b|=b-a,則a+b=_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間每天的定價(jià)為180元時(shí),房間會(huì)全部住滿;當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用.
(1)若每個(gè)房間定價(jià)增加40元,則這個(gè)賓館這一天的利潤(rùn)為多少元?
(2)若賓館某一天獲利10640元,則房?jī)r(jià)定為多少元?
(3)房?jī)r(jià)定為多少時(shí),賓館的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將6張小長(zhǎng)方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長(zhǎng)方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個(gè)長(zhǎng)方形,面積分別為S1和S2.已知小長(zhǎng)方形紙片的長(zhǎng)為a,寬為b,且a>b.當(dāng)AB長(zhǎng)度不變而BC變長(zhǎng)時(shí),將6張小長(zhǎng)方形紙片還按照同樣的方式放在新的長(zhǎng)方形ABCD內(nèi),S1與S2的差總保持不變,則a,b滿足的關(guān)系是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1: ,求大樓AB的高度是多少?(精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知?jiǎng)狱c(diǎn)P在函數(shù)(x>0)的圖象上運(yùn)動(dòng),PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,線段PM、PN分別與直線AB:y=﹣x+1交于點(diǎn)E,F,則AFBE的值為( 。
A. 4 B. 2 C. 1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com