【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過(guò)點(diǎn)A-3,4).

1)求b的值;

2過(guò)點(diǎn)A軸的平行線交拋物線于另一點(diǎn)B,在直線AB上任取一點(diǎn)P,作點(diǎn)A關(guān)于直線OP的對(duì)稱點(diǎn)C;

①當(dāng)點(diǎn)C恰巧落在軸時(shí),求直線OP的表達(dá)式;

②連結(jié)BC,求BC的最小值

【答案】1-3;(2OP的表達(dá)式為,BC的最小值為

【解析】試題分析:(1)把點(diǎn)A坐標(biāo)代入解析式即可得;

(2)由對(duì)稱性可知OA=OC,AP=CP,APOC,可得∠1=∠2,再根據(jù)軸對(duì)稱可得∠AOP=2,從而得∠AOP=1,得到AP=AO再根據(jù)A點(diǎn)坐標(biāo)即可得AP的長(zhǎng),從而得P點(diǎn)的坐標(biāo),利用待定系數(shù)法即可得解析式;

②以O為圓心,OA長(zhǎng)為半徑作⊙O,連接BO,交⊙O于點(diǎn)C,此時(shí)BC的值最小.

試題解析:1∵拋物線經(jīng)過(guò)點(diǎn)A-3,4),

x=-3,代入,則

b=-3;

2由對(duì)稱性可知OA=OCAP=CP,

APOC,1=∠2

又∵AOP=2,AOP=1

AP=AO,

A-34),

AO=5AP=5,

P12,4),

同理可得P2-84),

OP的表達(dá)式為;

②以O為圓心,OA長(zhǎng)為半徑作⊙O,連接BO,交⊙O于點(diǎn)C,此時(shí)BC值最小,

y=4代入,解得:x1=12,x2=-3B12,4),

OB= BC的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸交于A,B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=x﹣2經(jīng)過(guò)A,C兩點(diǎn),拋物線的頂點(diǎn)為D.

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)在直線AC上方的拋物線上存在一點(diǎn)P,使△PAC的面積最大,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo)及△PAC面積的最大值;

(3)y軸上是否存在一點(diǎn)G,使得GD+GB的值最。咳舸嬖,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙C 經(jīng)過(guò)原點(diǎn)且與兩坐標(biāo)軸分別交于點(diǎn) A 與點(diǎn) B,點(diǎn) B 的坐標(biāo)為(﹣,0),M 是圓上一點(diǎn),∠BMO=120°.⊙C 圓心 C 的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=﹣x2﹣4x+c經(jīng)過(guò)點(diǎn)A(2,0).

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)若點(diǎn)B(m,n)是拋物線上的一動(dòng)點(diǎn),點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為C.

①若B、C都在拋物線上,求m的值;

②若點(diǎn)C在第四象限,當(dāng)AC2的值最小時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某小組同學(xué)為了測(cè)量對(duì)面樓AB的高度,分工合作,有的組員測(cè)得兩樓間距離為40米,有的組員在教室窗戶處測(cè)得樓頂端A的仰角為30°,底端B的俯角為10°,請(qǐng)你根據(jù)以上數(shù)據(jù),求出樓AB的高度(精確到0.1米)

(參考數(shù)據(jù):sin10°≈0.17, cos10°≈0.98 tan10°≈0.18, ≈1.41, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小玲和弟弟小東分別從家和圖書(shū)館同時(shí)出發(fā),沿同一條路相向而行,小玲開(kāi)始跑步,然后改為步行,到達(dá)圖書(shū)館恰好用45min:小東騎自行車(chē)以300m/min的速度直接回家,兩人離家的路程ym)與各自離開(kāi)出發(fā)地的時(shí)間xmin)之間的函數(shù)圖象如圖所示.

1)家與圖書(shū)館之間的路程為   m,小東從圖書(shū)館到家所用的時(shí)間為   

2)求小玲步行時(shí)yx之間的函數(shù)關(guān)系式.

3)求兩人相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將等腰直角三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)上一點(diǎn),且,連接,作的平分線交于點(diǎn),連接

1)若,求的長(zhǎng);

2)求證:;

3)如圖2延長(zhǎng)線上一點(diǎn),連接,作垂直于,垂足為,連接,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】路邊有一根電線桿AB和一塊正方形廣告牌,有一天,小明突然發(fā)現(xiàn)在太陽(yáng)光照射下,電線桿頂端A的影子剛好落在正方形廣告牌B的上邊中點(diǎn)G處,而正方形廣告牌的影子剛好落在地面上E點(diǎn)(如圖),已知BC=5米,正方形邊長(zhǎng)為3米,DE=4米,則此時(shí)電線桿的高度約是(  )

A. 8米 B. 7米 C. 6米 D. 7.9米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為落實(shí)“精準(zhǔn)扶貧惠民政策”,計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊(duì)先合作施工15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.

(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

(2)為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊(duì)合作完成.則甲、乙兩隊(duì)合作完成該工程需要多少天?

查看答案和解析>>

同步練習(xí)冊(cè)答案