如圖,在等腰梯形ABCD中,CD∥AB,點(diǎn)E、F分別是AD、AB的中點(diǎn),且AC⊥BC,若AD=5,EF=6,則CF的長(zhǎng)為( )

A.6.5
B.6
C.5
D.4
【答案】分析:連接BD,由點(diǎn)E、F分別是AD、AB的中點(diǎn)可知EF是△ABD的中位線,故BD=2EF=12,再由梯形ABCD是等腰梯形可知AD=BC=5,BD=AC,由AC⊥BC可知△ABC是直角三角形,由勾股定理可求出AB的長(zhǎng),再由F是AB的中點(diǎn)可知CF=AB.
解答:解:連接BD,
∵點(diǎn)E、F分別是AD、AB的中點(diǎn),EF=6,
∴EF是△ABD的中位線,
∴BD=2EF=12,
∵梯形ABCD是等腰梯形,
∴AD=BC=5,BD=AC,
∵AC⊥BC,
∴△ABC是直角三角形,
∴AB===13,
∵F是AB的中點(diǎn),
∴CF=AB=×13=6.5.
故選A.
點(diǎn)評(píng):本題考查的是等腰梯形的性質(zhì)及直角三角形的性質(zhì)、三角形中位線定理,根據(jù)題意作出輔助線,利用三角形中位線定理求出BD的長(zhǎng)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止).設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個(gè)直角梯形時(shí),求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動(dòng),且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖說明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點(diǎn)并滿足什么條件時(shí),一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案