【題目】如圖,△ABC 中,∠C90°,AB10cmBC6cm,若動(dòng)點(diǎn) P 從點(diǎn) C開(kāi)始,按 C→A→B→C 的路徑運(yùn)動(dòng),且速度為每秒 1cm,設(shè)出發(fā)的時(shí)間為 t 秒.

1)出發(fā) 2 秒后,求△ABP 的周長(zhǎng).

2)當(dāng) t 為幾秒時(shí),BP 平分∠ABC?

3)另有一點(diǎn) Q,從點(diǎn) C 開(kāi)始,按 C→B→A→C 的路徑運(yùn)動(dòng),且速度為每秒 2cm,若 PQ 兩點(diǎn)同時(shí)出發(fā),當(dāng) PQ 中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).當(dāng) t 為何值時(shí),直 線(xiàn) PQ △ABC 的周長(zhǎng)分成相等的兩部分?

【答案】1)(16+2cm;(2)3;(3)4或12

【解析】

1)利用勾股定理AC=8cmPB=2cm,所以求出了三角形的周長(zhǎng).

2)過(guò)點(diǎn)PPDAB于點(diǎn)D,證明RtPBCRtPBD,得出AD的值,再設(shè)PC=xcm,則PA=8-xcm,利用勾股定理求解即可;

3)利用分類(lèi)討論的思想和周長(zhǎng)的定義求出了答案.

解:(1)如圖1,

∵∠C=90°AB=10cm,BC=6cm

∴由勾股定理得AC=8cm,動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm

∴出發(fā)2秒后,則CP=2cm,那么AP=6cm

∵∠C=90°,

∴由勾股定理得PB=2cm

∴△ABP的周長(zhǎng)為:AP+PB+AB=6+10+2=16+2cm

2)如圖2所示,過(guò)點(diǎn)PPDAB于點(diǎn)D

BP平分∠ABC,

PD=PC

RtPBCRtPBD中,

,

RtPBCRtPBDHL),

BD=CB=6cm,

AD=10-6=4cm

設(shè)PC=xcm,則AP=8-xcm

RtBPD中,,

,

解得:x=3

∴當(dāng)t=3秒時(shí),BP平分∠ABC;

3)分兩種情況:①當(dāng)P、Q沒(méi)相遇前,P點(diǎn)走過(guò)的路程為tcm,Q走過(guò)的路程為2tcm,

∵直線(xiàn)PQ把△ABC的周長(zhǎng)分成相等的兩部分

t+2t=12

t=4s;
②當(dāng)PQ相遇后,當(dāng)P點(diǎn)在AB上,QAC上,則AP=t-8AQ=2t-16,

∵直線(xiàn)PQ把△ABC的周長(zhǎng)分成相等的兩部分

t-8+2t-16=12

t=12s

故當(dāng)t4秒或12秒時(shí),直線(xiàn)PQ把△ABC的周長(zhǎng)分成相等的兩部分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司開(kāi)發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6/件,該產(chǎn)品在正式投放市場(chǎng)前通過(guò)代銷(xiāo)點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試銷(xiāo)售,售價(jià)為8/件,工作人員對(duì)銷(xiāo)售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線(xiàn)ODE表示日銷(xiāo)售量y(件)與銷(xiāo)售時(shí)間x(天)之間的函數(shù)關(guān)系,已知線(xiàn)段DE表示的函數(shù)關(guān)系中時(shí)間每增加1天,日銷(xiāo)售量減少5件.

1)第17天的日銷(xiāo)售量是   件,日銷(xiāo)售利潤(rùn)是   元.

2)求試銷(xiāo)售期間日銷(xiāo)售利潤(rùn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線(xiàn)段AB所示,他在地面上的影子如圖中線(xiàn)段AC所示,小亮的身高如圖中線(xiàn)段FG所示,路燈燈泡在線(xiàn)段DE上.

1)請(qǐng)你確定燈泡所在的位置,并畫(huà)出小亮在燈光下形成的影子.

2)如果小明的身高AB=1.6m,他的影子長(zhǎng)AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的邊長(zhǎng)AD=6,AB=4,EAB的中點(diǎn),F在邊BC上,且BF=2FCAF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ADBECF,它們依次交直線(xiàn)l1l2于點(diǎn)AB、C和點(diǎn)DE、F,AC=14;

1)求ABBC的長(zhǎng);

2)如果AD=7,CF=14,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑CD垂直于弦AB,垂足為E,FDC延長(zhǎng)線(xiàn)上一點(diǎn),且∠CBF=∠CDB

1)求證:FB⊙O的切線(xiàn);

2)若AB=8,CE=2,求sin∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)軸于點(diǎn),交軸于點(diǎn),且與反比例函數(shù)的圖象交于,兩點(diǎn).

(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)過(guò)點(diǎn)軸于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),求四邊形的面積;

(3)當(dāng)時(shí),的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為二次函數(shù)的圖象,下列說(shuō)法正確的有____________.

;

④當(dāng)時(shí),yx的增大而增大;

⑤方程的根是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,PAB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案