【題目】情景觀察:如圖1,△ABC中,AB=AC,∠BAC=45°CD⊥AB,AE⊥BC,垂足分別為D、ECDAE交于點(diǎn)F

寫出圖1中所有的全等三角形   ;

線段AF與線段CE的數(shù)量關(guān)系是   ,并寫出證明過程.

問題探究:

如圖2,△ABC中,∠BAC=45°,AB=BCAD平分∠BAC,AD⊥CD,垂足為D,ADBC交于點(diǎn)E

求證:AE=2CD

【答案】①△ABE≌△ACE,△ADF≌△CDB②AF=2CE,詳見解析.

【解析】試題分析:

情景觀察:①由ABACAEBC,AE是公共邊,根據(jù)“HL”即可判斷ABE≌△ACE;根據(jù)等腰三角形三線合一和∠A45°,可求得∠DAF22.5°,利用等邊對(duì)等角和三角形內(nèi)角和定理求得∠B67.5°,在RtBDC中即可求得∠DCB22.5°,在RtADC中由∠A45°可得ADCD,由“ASA”即可得出ADF≌△CDB;

②由①中ADF≌△CDB得出AFBC,再由三線合一得出BC2CE,等量代換即可得出結(jié)論;

問題探究:延長(zhǎng)AB、CD交于點(diǎn)G,由ASA證明ADC≌△ADG,得出對(duì)應(yīng)邊相等CDGD,即CG2CD,證出∠BAEBCG,由ASA證明ABE≌△CBG,得出AECG2CD即可.

試題解析:

解:①圖1中所有的全等三角形為ABE≌△ACE,ADF≌△CDB;

故答案為:ABE≌△ACE,△ADF≌△CDB;

②線段AF與線段CE的數(shù)量關(guān)系是:AF2CE;

故答案為:AF2CE

證明:∵△BCD≌△FAD

AFBC,

ABAC,AEBC,

BC2CE

AF2CE;

問題探究:

證明:延長(zhǎng)ABCD交于點(diǎn)G,如圖2所示:

AD平分∠BAC,

∴∠CAD=∠GAD

ADCD,

∴∠ADC=∠ADG90°

ADCADG中,

,

∴△ADC≌△ADGASA),

CDGD,即CG2CD

∵∠BAC45°,ABBC,

∴∠ABC90°

∴∠CBG90°,

∴∠G+∠BCG90°,

∵∠G+∠BAE90°,

∴∠BAE=∠BCG,

ABECBG中,

,

∴△ABE≌△CBGASA),

AECG2CD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系中,已知點(diǎn)P(-2,-1),點(diǎn)T(t , 0)是x軸上的一個(gè)動(dòng)點(diǎn).

(1)求點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′的坐標(biāo);
(2)當(dāng)t取何值時(shí),△P′TO是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)EBC上一點(diǎn),連接DE,把DEC沿DE折疊得到DEF,延長(zhǎng)EFABG,連接DG

(1)求EDG的度數(shù).

(2)如圖2,EBC的中點(diǎn),連接BF

求證:BFDE;

若正方形邊長(zhǎng)為12,求線段AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一列數(shù),按一定規(guī)律排列成:,其中有三個(gè)相鄰的和為1224,這種說法對(duì)嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠去年的總產(chǎn)值比總支出多500萬元.由于今年總產(chǎn)值比去年增加15%,總支出比去年節(jié)約10%,因此,今年總產(chǎn)值比支出多950萬元.今年的總產(chǎn)值和總支出各是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列網(wǎng)格圖中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位.在RtABC中,∠C=90°,AC=3,BC=4.

(1)若點(diǎn)B的坐標(biāo)為(﹣3,5),試在圖中畫出直角坐標(biāo)系,并寫出A、C兩點(diǎn)的坐標(biāo);

(2)根據(jù)(1)的坐標(biāo)系作出與ABC關(guān)于x軸對(duì)稱的圖形A1B1C1,并寫出B1、C1兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC向右平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,可以得到.

(1)畫出平移后的;

(2)寫出三個(gè)頂點(diǎn)的坐標(biāo);

(3)已知點(diǎn)Px軸上,、P為頂點(diǎn)的三角形面積為4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在8×8方格紙中,△ABC的三個(gè)頂點(diǎn)都在小方格的頂點(diǎn)上,按要求畫一個(gè)三角形,使它的頂點(diǎn)都在方格的頂點(diǎn)上.請(qǐng)?jiān)趫D2中畫一個(gè)三角形,使它與△ABC相似,且相似比為2:1;請(qǐng)?jiān)趫D3中畫一個(gè)三角形,使它與△ABC相似,且相似比為 :1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)﹣a2bc+cba2

(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab

(3)(﹣x+2x2+5)+(4x2﹣3﹣6x)

(4)(2x2+3x)﹣4(x﹣x2+

查看答案和解析>>

同步練習(xí)冊(cè)答案