【題目】定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成兩個(gè)三角形,如果這兩個(gè)三角形相似但不全等,我們就把這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線,在四邊形ABCD中,對(duì)角線BD是它的相似對(duì)角線,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________度
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),已知點(diǎn)為拋物線第一象限上一動(dòng)點(diǎn),連接、、.
(1)求拋物線的解析式,并直接寫出拋物線的頂點(diǎn)坐標(biāo);
(2)當(dāng)的面積最大時(shí),求出點(diǎn)的坐標(biāo);
(3)如圖②,當(dāng)點(diǎn)與拋物線頂點(diǎn)重合時(shí),過點(diǎn)的直線與拋物線交于點(diǎn),在直線上方的拋物線上是否存在一點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 拋物線與軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)興趣小組的學(xué)生進(jìn)行社會(huì)實(shí)踐活動(dòng)時(shí),想利用所學(xué)的解直角三角形的知識(shí)測(cè)量教學(xué)樓的高度,他們先在點(diǎn)D處用測(cè)角儀測(cè)得樓頂M的仰角為30°,再沿DF方向前行40米到達(dá)點(diǎn)E處,在點(diǎn)E處測(cè)得樓頂M的仰角為45°,已知測(cè)角儀的高AD為1.5米,請(qǐng)根據(jù)他們的測(cè)量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一般捕魚船在A處發(fā)出求救信號(hào),位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無法直線到達(dá).救援艇決定馬上調(diào)整方向,先向北偏東方以每小時(shí)30海里的速度航行,同時(shí)捕魚船向正北低速航行.30分鐘后,捕魚船到達(dá)距離A處海里的D處,此時(shí)救援艇在C處測(cè)得D處在南偏東的方向上.
求C、D兩點(diǎn)的距離;
捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達(dá)時(shí)到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2—(m—1)x+m+2=0
(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值;
(2)若Rt△ABC中,∠C=90°,tanA的值恰為(1)中方程的根,求cosB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H.給出下列結(jié)論,其中正確結(jié)論的個(gè)數(shù)是( )
①△BDE∽△DPE;②;③;④tan∠DBE=.
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com