作業(yè)寶如圖,PA是⊙O的切線,PA=2數(shù)學(xué)公式,PB=2,⊙O的半徑為________.                    

2
分析:連結(jié)OA,根據(jù)切線的性質(zhì)得OA⊥PA,然后利用勾股定理可計(jì)算出OA.
解答:連結(jié)OA,如圖,
∵PA是⊙O的切線,
∴OA⊥PA,
在Rt△OBP中,PO=2,PA=2,
∴OA==2
故答案為2
點(diǎn)評:本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑;經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn);經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結(jié)BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆山東省臨沂市莒南縣九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB="2BC"

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省臨沂市莒南縣九年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB=2BC

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.
(1)求證:PC是⊙O的切線;    
(2)若AC=PD,連結(jié)BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年4月中考數(shù)學(xué)模擬試卷(58)(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結(jié)BC.求證:AB=2BC.

查看答案和解析>>

同步練習(xí)冊答案