【題目】觀察下列等式:
第1個(gè)等式:a1= = ×(1﹣ );
第2個(gè)等式:a2= = ×( ﹣ );
第3個(gè)等式:a3= = ×( ﹣ );
第4個(gè)等式:a4= = ×( ﹣ );
…
請解答下列問題:
(1)按以上規(guī)律列出第5個(gè)等式:a5=;
(2)用含有n的代數(shù)式表示第n個(gè)等式:an==(n為正整數(shù));
(3)求a1+a2+a3+a4+…+a100的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對應(yīng)的數(shù)為﹣10,B點(diǎn)對應(yīng)的數(shù)為90.
(1)請寫出與AB兩點(diǎn)距離相等的M點(diǎn)對應(yīng)的數(shù);
(2)現(xiàn)在有一只電子螞蟻P從B點(diǎn)出發(fā)時(shí),以5個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以3個(gè)單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,你知道對應(yīng)的數(shù)是多少嗎?
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以5個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),經(jīng)過多長的時(shí)間兩只電子螞蟻在數(shù)軸上相距30個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年末到2020年5月2日截止,世界各國感染新冠狀肺炎病毒患者達(dá)到3315003人,將數(shù)據(jù)3315003四舍五入精確到萬位,用科學(xué)記數(shù)表示為()
A.3.31×106B.3.32×106C.3.315×105D.3.32×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知ABCD的三個(gè)頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則點(diǎn)D的坐標(biāo)是( )
A.(﹣2,1)
B.(﹣2,﹣1)
C.(﹣1,﹣2)
D.(﹣1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個(gè)倉庫要向A、B兩地運(yùn)送水泥,已知甲庫可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄“元/(噸、千米)”表示每噸水泥運(yùn)送1千米所需人民幣)(本題滿分10分)
路程/千米 | 運(yùn)費(fèi)(元/噸、千米) | |||
甲庫 | 乙?guī)?/span> | 甲庫 | 乙?guī)?/span> | |
A地 | 20 | 15 | 12 | 12 |
B地 | 25 | 20 | 10 | 8 |
(1)設(shè)甲庫運(yùn)往A地水泥噸,求總運(yùn)費(fèi)(元)關(guān)于(噸)的函數(shù)關(guān)系式;
(2)當(dāng)甲、乙兩庫各運(yùn)往A、B兩地多少噸水泥時(shí),總運(yùn)費(fèi)最?最省的總運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y1=ax2+bx+3的圖象與x軸相交于點(diǎn)A(﹣3,0)、B(1,0),交y軸于點(diǎn)C,C、D是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)y2=mx+n的圖象經(jīng)過B、D兩點(diǎn).
(1)求二次函數(shù)的解析式及點(diǎn)D的坐標(biāo);
(2)根據(jù)圖象寫出y2>y1時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,求證:EF=BE+FD.
(2)如圖2,四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足什么關(guān)系時(shí),仍有EF=BE+FD,說明理由.
(3)如圖3,四邊形ABCD中,∠BAD≠90°,AB=AD,AC平分∠BCD,AE⊥BC于E,AF⊥CD交CD延長線于F,若BC=8,CD=3,則CE= .(不需證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com