【題目】第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將于2022年在北京市和張家口市舉行.為了調(diào)查學(xué)生對(duì)冬奧知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取20名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(百分制),并對(duì)數(shù)據(jù)(成績)進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.甲校20名學(xué)生成績的頻數(shù)分布表和頻數(shù)分布直方圖如下:
b.甲校成績?cè)?/span>的這一組的具體成績是:
87 88 88 88 89 89 89 89
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)、方差如下:
根據(jù)以上圖表提供的信息,解答下列問題:
(1)表1中a = ;表2中的中位數(shù)n = ;
(2)補(bǔ)全圖1甲校學(xué)生樣本成績頻數(shù)分布直方圖;
(3)在此次測(cè)試中,某學(xué)生的成績是87分,在他所屬學(xué)校排在前10名,由表中數(shù)據(jù)可知該學(xué)生是 校的學(xué)生(填“甲”或“乙”),理由是 ;
(4)假設(shè)甲校200名學(xué)生都參加此次測(cè)試,若成績80分及以上為優(yōu)秀,估計(jì)成績優(yōu)秀的學(xué)生人數(shù)為__________.
【答案】(1)1,88.5;(2)見解析;(3)乙,乙的中位數(shù)是85,87>85;(4)140
【解析】
(1)根據(jù)頻數(shù)分布表和頻數(shù)分布直方圖的信息列式計(jì)算即可得到a的值,根據(jù)中位數(shù)的定義求解可得n的值;
(2)根據(jù)題意補(bǔ)全頻數(shù)分布直方圖即可;
(3)根據(jù)甲這名學(xué)生的成績?yōu)?/span>87分,小于甲校樣本數(shù)據(jù)的中位數(shù)88.5分,大于乙校樣本數(shù)據(jù)的中位數(shù)85分可得;
(4)利用樣本估計(jì)總體思想求解可得.
(1)a= ,由頻數(shù)分布表和頻數(shù)分布直方圖中的信息可知,排在中間的兩個(gè)數(shù)是88和89,
∴,
故答案為: 1,88.5;
(2) ∵b=20-1-3-8-6=2,
∴補(bǔ)全圖1甲校學(xué)生樣本成績頻數(shù)分布直方圖如圖所示;
(3)在此次測(cè)試中,某學(xué)生的成績是87分,在他所屬學(xué)校排在前10名,由表中數(shù)據(jù)可知該學(xué)生是乙校的學(xué)生,
理由:乙的中位數(shù)是85,87>85,
故答案為:乙,乙的中位數(shù)是85,87>85;
(4) ,
∴成績優(yōu)秀的學(xué)生人數(shù)為140人,
故答案為:140人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,∠BAC=120°.
(1)用尺規(guī)作AC的垂直平分線EF交AC于點(diǎn)E,交BC于點(diǎn)F.(不寫作法,但保留作圖痕跡)
(2)求證:BF=2CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線過點(diǎn)A(4,0),B(﹣2,0),C(0,﹣4).
(1)求拋物線的解析式;
(2)如圖,點(diǎn)M是拋物線AC段上的一個(gè)動(dòng)點(diǎn),當(dāng)圖中陰影部分的面積最小值時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明設(shè)計(jì)的“過三角形的一個(gè)頂點(diǎn)作該頂點(diǎn)對(duì)邊的平行線”的尺規(guī)作圖過程.
已知:如圖1,△ABC.
求作:直線AD,使AD∥BC.
作法:如圖2:
①分別以點(diǎn)A、C為圓心,以大于AC為半徑作弧,兩弧交于點(diǎn)E、F;
②作直線EF,交AC于點(diǎn)O;
③作射線BO,在射線BO上截取OD(B與D不重合),使得OD = OB;
④作直線AD.
∴ 直線AD就是所求作的平行線.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程,完成下面的證明.
證明:連接CD.
∵OA =OC,OB=OD,
∴四邊形ABCD是平行四邊形(_______________________)(填推理依據(jù)).
∴AD∥BC(__________________________________)(填推理依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】服裝廠批發(fā)某種服裝,每件成本為65元,規(guī)定不低于10件可以批發(fā),其批發(fā)價(jià)y(元/件)與批發(fā)數(shù)量x(件)(x為正整數(shù))之間所滿足的函數(shù)關(guān)系如圖所示.
(1)求y與x之間所滿足的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)設(shè)服裝廠所獲利潤為w(元),若10≤x≤50(x為正整數(shù)),求批發(fā)該種服裝多少件時(shí),服裝廠獲得利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動(dòng)中,對(duì)團(tuán)體購買門票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購買的門票張數(shù),現(xiàn)在只花費(fèi)了4800元.
(1)求每張門票原定的票價(jià);
(2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對(duì)于個(gè)人購票也采取優(yōu)惠措施,原定票價(jià)經(jīng)過連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為(-,0)、(0,-1),把點(diǎn)A繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)135°得點(diǎn)C,若點(diǎn)C在反比例函數(shù)y=的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)D在y軸上,點(diǎn)E在反比例函數(shù)y=的圖象上,且以點(diǎn)A、B、D、E為頂點(diǎn)的四邊形是平行四邊形.請(qǐng)畫出滿足題意的示意圖并在示意圖的下方直接寫出相應(yīng)的點(diǎn)D、E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,∠ABC=90°,AB=1,BC=2,將線段BC繞點(diǎn)C順時(shí)旋轉(zhuǎn)90°得到線段CD,連接AD.
(1)說明△ACD的形狀,并求出△ACD的面積;
(2)把等腰直角三角板按如圖2的方式擺放,頂點(diǎn)E在CB邊上,頂點(diǎn)F在DC的延長線上,直角頂點(diǎn)與點(diǎn)C重合.從A,B兩題中任選一題作答:
A .如圖3,連接DE,BF,
①猜想并證明DE與BF之間的關(guān)系;②將三角板繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),直接寫出DE與BF之間的關(guān)系.
B .將圖2中的三角板繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(0<α<360°),如圖4所示,連接BE,DF,連接點(diǎn)C與BE的中點(diǎn)M,
①猜想并證明CM與DF之間的關(guān)系;②當(dāng)CE=1,CM=時(shí),請(qǐng)直接寫出α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初二數(shù)學(xué)興趣小組活動(dòng)時(shí),碰到這樣一道題:
“已知正方形AD,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,若,則EG=FH”.
經(jīng)過思考,大家給出了以下兩個(gè)方案:
(甲)過點(diǎn)A作AM∥HF交BC于點(diǎn)M,過點(diǎn)B作BN∥EG交CD于點(diǎn)N;
(乙)過點(diǎn)A作AM∥HF交BC于點(diǎn)M,作AN∥EG交CD的延長線于點(diǎn)N;
(1)對(duì)小杰遇到的問題,請(qǐng)?jiān)诩、乙兩個(gè)方案中任選一個(gè),加以證明(如圖1)
(2)如果把條件中的“”改為“EG與FH的夾角為45°”,并假設(shè)正方形ABCD的邊長為1,FH的長為(如圖2),試求EG的長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com