如圖,AB是半圓O的直徑,CB切⊙O于B,CD切⊙O于D,交BA的延長(zhǎng)線于E,若EA=1,ED=2,則BC的長(zhǎng)為________.

3
分析:連OD,可用切割線定理,先求出EB,AB、OD,再利用相似三角形,解得EC=5,利用切線的性質(zhì)求得CD即可.
解答:連接OD,
由AB是半圓O的直徑,
得BC=DC,DE2=EA•EB,
∵EA=1,ED=2,
∴EB=4,
∴AB=EB-EA=3,
∴OD=OA=,
由CB切⊙O于B,CD切⊙O于D,知
∠CBE=90°,∠ODE=90°,
∴△CBE∽△ODE,
==
解得EC=5,
又∵CD和CB是⊙O的兩條切線,
∴CD=BC,則CD=EC-ED=5-2=3.
故答案為:3.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)相似三角形的判定與性質(zhì),垂徑定理,切線的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,此題的關(guān)鍵是連接OD,連接圓心與切點(diǎn)是一條常用的輔助線,利用切線的性質(zhì)可構(gòu)造出直角三角形,在圓的證明與計(jì)算中有廣泛的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點(diǎn)P從點(diǎn)B開始沿BA邊向點(diǎn)A以1cm/s的速度移動(dòng),若AB長(zhǎng)為10cm,點(diǎn)O到AC的距離為4cm.
(1)求弦AC的長(zhǎng);
(2)問經(jīng)過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點(diǎn)B,OC與弦AD平行交BM于點(diǎn)C.
(1)求證:CD是半圓O的切線;
(2)若AB的長(zhǎng)為4,點(diǎn)D在半圓O上運(yùn)動(dòng),當(dāng)AD的長(zhǎng)為1時(shí),求點(diǎn)A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點(diǎn)D是半圓上一動(dòng)點(diǎn),AB=10,AC=8,當(dāng)△ACD是等腰三角形時(shí),點(diǎn)D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,以O(shè)A為直徑的半圓O′與弦AC交于點(diǎn)D,O′E∥AC,并交OC于點(diǎn)E,則下列結(jié)論:①S△O′OE=
1
2
S△AOC2;②點(diǎn)D時(shí)AC的中點(diǎn);③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,過點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,F(xiàn)為垂足,交AC于點(diǎn)C使∠BED=∠C.請(qǐng)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案