【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,A(2,4),B(4,1),C(-3,4)
(1)平移線段AB到線段CD,使點(diǎn)A與點(diǎn)C重合,寫出點(diǎn)D的坐標(biāo).
(2)直接寫出線段AB平移至線段CD處所掃過的面積.
(3)平移線段AB,使其兩端點(diǎn)都在坐標(biāo)軸上,則點(diǎn)A的坐標(biāo)為
【答案】(1)(-1,1);(2)15;(3)(0,3)或(-2,0)
【解析】
(1)根據(jù)點(diǎn)A與點(diǎn)C的坐標(biāo)得出坐標(biāo)變化規(guī)律,從而得到點(diǎn)D的坐標(biāo);
(2)根據(jù)平移的性質(zhì)得出ABDC是平行四邊形,根據(jù)平行四邊形的面積公式列式計(jì)算即可;
(3)分兩種情況:①平移后A的對(duì)應(yīng)點(diǎn)在y軸上,B的對(duì)應(yīng)點(diǎn)在x軸上;②平移后A的對(duì)應(yīng)點(diǎn)在x軸上,B的對(duì)應(yīng)點(diǎn)在y軸上.
(1)∵平移線段AB到線段CD,使點(diǎn)A與點(diǎn)C重合,A(2,4),C(-3,4),
∴坐標(biāo)變化規(guī)律是:橫坐標(biāo)減去5,縱坐標(biāo)不變,∵B(4,1),∴點(diǎn)D的坐標(biāo)為(-1,1);
(2)∵平移線段AB到線段CD,∴AB∥CD,AB=CD,
∴四邊形ABDC是平行四邊形,∴線段AB平移至線段CD處所掃過的面積為:5×3=15;
(3)分兩種情況:①如果平移后A的對(duì)應(yīng)點(diǎn)在y軸上,B的對(duì)應(yīng)點(diǎn)在x軸上,
那么坐標(biāo)變化規(guī)律是:橫坐標(biāo)減去2,縱坐標(biāo)減去1,
∵A(2,4),∴平移后點(diǎn)A的坐標(biāo)為(0,3)
②如果平移后A的對(duì)應(yīng)點(diǎn)在x軸上,B的對(duì)應(yīng)點(diǎn)在y軸上,
那么坐標(biāo)變化規(guī)律是:橫坐標(biāo)減去4,縱坐標(biāo)減去4,∵A(2,4),∴平移后點(diǎn)的坐標(biāo)為(-2,0);
故答案為(0,3)或(-2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P(﹣3,m)和 Q(1,m)是拋物線y=x2+bx﹣3上的兩點(diǎn).
(1)求b的值;
(2)將拋物線y=x2+bx﹣3的圖象向上平移k(是正整數(shù))個(gè)單位,使平移后的圖象與x軸無(wú)交點(diǎn),求k的最小值;
(3)將拋物線y=x2+bx﹣3的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請(qǐng)你結(jié)合新圖象回答:當(dāng)直線y=x+n與這個(gè)新圖象有兩個(gè)公共點(diǎn)時(shí),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點(diǎn),過圓上一點(diǎn)C作⊙O的切線CF,分別交AD、BE于點(diǎn)M、N,連接AC、CB,若∠ABC=30°,則AM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,且AC平分∠BAD,點(diǎn)E為AB的延長(zhǎng)線上一點(diǎn),且∠ECB=∠CAD.
(1)①填空:∠ACB= ,理由是 ;
②求證:CE與⊙O相切;
(2)若AB=6,CE=4,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過對(duì)下面數(shù)學(xué)模型的研究學(xué)習(xí),解決下列問題:
(模型呈現(xiàn))(1)如圖1,,,過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn).由,得.又,可以推理得到.進(jìn)而得到 , .我們把這個(gè)數(shù)學(xué)模型稱為“字”模型或“一線三等角”模型;
(模型應(yīng)用)(2)①如圖2,,,,連接,,且于點(diǎn),與直線交于點(diǎn)是的中點(diǎn);
②如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)為平面內(nèi)任一點(diǎn).若是以為斜邊的等腰直角三角形,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+b與x軸、y軸分別交于點(diǎn)A,B,且OA=8,OB=6,P點(diǎn)是第一象限內(nèi)直線y=kx+b上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),點(diǎn)P的橫坐標(biāo)為m.
(1)求直線AB的解析式.
(2)C是x軸上一點(diǎn),且OC=2,求△ACP的面積S與m之間的函數(shù)關(guān)系式;
(3)在x軸上是否有在點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過原點(diǎn),與軸的另一個(gè)交點(diǎn)為,將拋物線向右平移個(gè)單位得到拋物線, 交軸于, 兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),交軸于點(diǎn).
()求拋物線的解析式及頂點(diǎn)坐標(biāo).
()以為斜邊向上作等腰直角三角形,當(dāng)點(diǎn)落在拋物線的對(duì)稱軸上時(shí),求拋物線的解析式.
()若拋物線的對(duì)稱軸存在點(diǎn),使為等邊三角形,請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車同時(shí)分別從 A,B 兩處出發(fā),沿直線 AB 作勻速運(yùn)動(dòng),同時(shí)到達(dá)C 處,B 在 AC 上,甲的速度是乙的速度的1.5 倍,設(shè) t(分)后甲、 乙兩遙控車與 B 處的距離分別為 d1,d2,且 d1,d2 與出發(fā)時(shí)間 t 的函數(shù)關(guān)系如圖,那么在兩車相遇前,兩車與 B 點(diǎn)的距離相等時(shí),t 的值為( )
A.0.4B.0.5C.0.6D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,已知三角形的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,
(1)作出三角形關(guān)于軸對(duì)稱的三角形
(2)點(diǎn)的坐標(biāo)為 .
(3)①利用網(wǎng)絡(luò)畫出線段的垂直平分線;②為直線上上一動(dòng)點(diǎn),則的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com