【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,A(2,4),B(4,1)C(-3,4)

(1)平移線段AB到線段CD,使點(diǎn)A與點(diǎn)C重合,寫出點(diǎn)D的坐標(biāo).

(2)直接寫出線段AB平移至線段CD處所掃過的面積.

(3)平移線段AB,使其兩端點(diǎn)都在坐標(biāo)軸上,則點(diǎn)A的坐標(biāo)為

【答案】1(-11);(215;(3(03)(-2,0)

【解析】

1)根據(jù)點(diǎn)A與點(diǎn)C的坐標(biāo)得出坐標(biāo)變化規(guī)律,從而得到點(diǎn)D的坐標(biāo);
2)根據(jù)平移的性質(zhì)得出ABDC是平行四邊形,根據(jù)平行四邊形的面積公式列式計(jì)算即可;
3)分兩種情況:①平移后A的對(duì)應(yīng)點(diǎn)在y軸上,B的對(duì)應(yīng)點(diǎn)在x軸上;②平移后A的對(duì)應(yīng)點(diǎn)在x軸上,B的對(duì)應(yīng)點(diǎn)在y軸上.

(1)∵平移線段AB到線段CD,使點(diǎn)A與點(diǎn)C重合,A(2,4)C(-3,4),

∴坐標(biāo)變化規(guī)律是:橫坐標(biāo)減去5,縱坐標(biāo)不變,∵B(4,1),∴點(diǎn)D的坐標(biāo)為(-1,1);

(2)∵平移線段AB到線段CD,∴ABCD,AB=CD,

∴四邊形ABDC是平行四邊形,∴線段AB平移至線段CD處所掃過的面積為:5×3=15;

(3)分兩種情況:①如果平移后A的對(duì)應(yīng)點(diǎn)在y軸上,B的對(duì)應(yīng)點(diǎn)在x軸上,

那么坐標(biāo)變化規(guī)律是:橫坐標(biāo)減去2,縱坐標(biāo)減去1

A(2,4),∴平移后點(diǎn)A的坐標(biāo)為(0,3)

②如果平移后A的對(duì)應(yīng)點(diǎn)在x軸上,B的對(duì)應(yīng)點(diǎn)在y軸上,

那么坐標(biāo)變化規(guī)律是:橫坐標(biāo)減去4,縱坐標(biāo)減去4,∵A(24),∴平移后點(diǎn)的坐標(biāo)為(-2,0)

故答案為(0,3)(-20)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知P(﹣3,m)和 Q(1,m)是拋物線y=x2+bx﹣3上的兩點(diǎn).

(1)求b的值;

(2)將拋物線y=x2+bx﹣3的圖象向上平移k(是正整數(shù))個(gè)單位,使平移后的圖象與x軸無(wú)交點(diǎn),求k的最小值;

(3)將拋物線y=x2+bx﹣3的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請(qǐng)你結(jié)合新圖象回答:當(dāng)直線y=x+n與這個(gè)新圖象有兩個(gè)公共點(diǎn)時(shí),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB⊙O的直徑,AB=2,ADBE是圓O的兩條切線,A、B為切點(diǎn),過圓上一點(diǎn)C⊙O的切線CF,分別交ADBE于點(diǎn)M、N,連接AC、CB,若∠ABC=30°,則AM=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,點(diǎn)C、D在O上,且AC平分BAD,點(diǎn)E為AB的延長(zhǎng)線上一點(diǎn),且ECB=CAD.

(1)填空:ACB= ,理由是 ;

求證:CE與O相切;

(2)若AB=6,CE=4,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過對(duì)下面數(shù)學(xué)模型的研究學(xué)習(xí),解決下列問題:

(模型呈現(xiàn))(1)如圖1,,過點(diǎn)于點(diǎn),過點(diǎn)于點(diǎn).,得.,可以推理得到.進(jìn)而得到 , .我們把這個(gè)數(shù)學(xué)模型稱為模型或一線三等角模型;

(模型應(yīng)用)(2)①如圖2,,,連接,,且于點(diǎn),與直線交于點(diǎn)的中點(diǎn);

②如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)為平面內(nèi)任一點(diǎn).是以為斜邊的等腰直角三角形,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ykx+bx軸、y軸分別交于點(diǎn)A,B,且OA8,OB6P點(diǎn)是第一象限內(nèi)直線ykx+b上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),點(diǎn)P的橫坐標(biāo)為m

1)求直線AB的解析式.

2Cx軸上一點(diǎn),且OC2,求ACP的面積Sm之間的函數(shù)關(guān)系式;

3)在x軸上是否有在點(diǎn)Q,使以AB,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過原點(diǎn),與軸的另一個(gè)交點(diǎn)為,將拋物線向右平移個(gè)單位得到拋物線, 軸于 兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),交軸于點(diǎn)

)求拋物線的解析式及頂點(diǎn)坐標(biāo).

)以為斜邊向上作等腰直角三角形,當(dāng)點(diǎn)落在拋物線的對(duì)稱軸上時(shí),求拋物線的解析式.

)若拋物線的對(duì)稱軸存在點(diǎn),使為等邊三角形,請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車同時(shí)分別從 A,B 兩處出發(fā),沿直線 AB 作勻速運(yùn)動(dòng),同時(shí)到達(dá)C ,B AC ,甲的速度是乙的速度的1.5 ,設(shè) t()后甲、 乙兩遙控車與 B 處的距離分別為 d1,d2, d1,d2 與出發(fā)時(shí)間 t 的函數(shù)關(guān)系如圖,那么在兩車相遇前,兩車與 B 點(diǎn)的距離相等時(shí),t 的值為(

A.0.4B.0.5C.0.6D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,已知三角形的三個(gè)頂點(diǎn)的坐標(biāo)分別為,

1)作出三角形關(guān)于軸對(duì)稱的三角形

2)點(diǎn)的坐標(biāo)為 .

3)①利用網(wǎng)絡(luò)畫出線段的垂直平分線;②為直線上上一動(dòng)點(diǎn),則的最小值為 .

查看答案和解析>>

同步練習(xí)冊(cè)答案