【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°,∠DAB=45°.求證:AC=DC.
【答案】證明見解析.
【解析】由AB=AC,根據(jù)等腰三角形的兩底角相等得到∠B=∠C=30°,再根據(jù)三角形的內(nèi)角和定理可計(jì)算出∠BAC=120°,而∠DAB=45°,則∠DAC=∠BAC-∠DAB=120°-45°,根據(jù)三角形外角性質(zhì)得到∠ADC=∠B+∠DAB=75°,再根據(jù)等腰三角形的判定可得DC=AC,這樣即可得到結(jié)論.
∵AB=AC,
∴∠B=∠C=30°,
∵∠C+∠BAC+∠B=180°,
∴∠BAC=180°﹣30°﹣30°=120°,
∵∠DAB=45°,
∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;
∵∠DAB=45°,
∴∠ADC=∠B+∠DAB=75°,
∴∠DAC=∠ADC,
∴DC=AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(jí)(1)班班主任對(duì)本班學(xué)生進(jìn)行了“我最喜歡的課外活動(dòng)”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類(記為A)、音樂類(記為B)、球類(記為C)、其它類(記為D).根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個(gè)學(xué)生都進(jìn)行了登記且每人只登記了一種自己最喜歡的課外活動(dòng).班主任根據(jù)調(diào)查情況把學(xué)生進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中所給信息解答下列問題:
(1)七年級(jí)(1)班學(xué)生總?cè)藬?shù)為人,扇形統(tǒng)計(jì)圖中D類所對(duì)應(yīng)扇形的圓心角為度,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名學(xué)生擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請(qǐng)你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);
(2)如圖(2),將∠COD繞頂點(diǎn)O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個(gè)旋轉(zhuǎn)過程中,當(dāng)∠AOC的度數(shù)是多少時(shí),∠COE=2∠DOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價(jià)格也在不斷下降.今年5月份A款汽車的售價(jià)比去年同期每輛降價(jià)1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.
(1)今年5月份A款汽車每輛售價(jià)多少萬元?
(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進(jìn)價(jià)為7.5萬元,B款汽車每輛進(jìn)價(jià)為6萬元,公司預(yù)計(jì)用不多于105萬元且不少于99萬元的資金購進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?
(3)如果B款汽車每輛售價(jià)為8萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時(shí),哪種方案對(duì)公司更有利?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我們學(xué)習(xí)過的數(shù)學(xué)教科書中,有一個(gè)數(shù)學(xué)活動(dòng),其具體操作過程是:
第一步:對(duì)折矩形紙片ABCD,使AD與BC重合,把紙片展開,得到折痕EF(如圖1);
第二步:再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過點(diǎn)B,得到折痕BM,同時(shí)得到線段BN(如圖2).
請(qǐng)解答以下問題:
(1)如圖2,若延長MN交BC于P,△BMP是什么三角形?請(qǐng)證明你的結(jié)論;
(2)在圖2中,若AB=a,BC=b,a、b滿足什么關(guān)系,才能在矩形紙片ABCD上剪出符合(1)中結(jié)論的三角形紙片BMP?
(3)設(shè)矩形ABCD的邊AB=2,BC=4,并建立如圖3所示的直角坐標(biāo)系.設(shè)直線BM′為y=kx,當(dāng)∠M′BC=60°時(shí),求k的值.此時(shí),將△ABM′沿BM′折疊,點(diǎn)A是否落在EF上(E、F分別為AB、CD中點(diǎn)),為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點(diǎn),AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點(diǎn)P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個(gè)長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個(gè)長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長方體紙盒的底面是一個(gè)正方形,并且這個(gè)長方體紙盒所有棱長的和是880cm,求這個(gè)長方體紙盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點(diǎn),若CF=2,F(xiàn)D=4,則BC的長為( )
A.6
B.2
C.4
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=2,∠B=30°,P是BC邊上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥BC,交△ABC的AB邊于點(diǎn)D.若設(shè)PD為x,△BPD的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com