【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內的P(,8),Q(4,m)兩點,與x軸交于A點.

(1)分別求出這兩個函數(shù)的表達式;

(2)寫出點P關于原點的對稱點P'的坐標;

(3)求P'AO的正弦值.

【答案】(1)y=﹣2x+9;(2)(-,﹣8);(3)

【解析】試題分析:(1)根據(jù)P,8),可得反比例函數(shù)解析式,根據(jù)P8),Q41)兩點可得一次函數(shù)解析式;

2)根據(jù)中心對稱的性質,可得點P關于原點的對稱點P'的坐標;

3)過點P′作PDx軸,垂足為D,構造直角三角形,依據(jù)P'D以及AP'的長,即可得到∠P'AO的正弦值.

試題解析:(1)∵點P在反比例函數(shù)的圖象上,∴把點P,8)代入可得:k2=4,∴反比例函數(shù)的表達式為,∴Q4,1).

P8),Q4,1)分別代入中,得:,解得:,∴一次函數(shù)的表達式為y=﹣2x+9;

2)點P關于原點的對稱點P'的坐標為(,﹣8);

3)過點P′作PDx軸,垂足為D

P′(,﹣8),∴OD=PD=8,∵點Ay=﹣2x+9的圖象上,∴點A,0),即OA=,∴DA=5,∴PA==,∴sinPAD==,∴sinPAO=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的二次方程的兩根為、,且,則________,________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為降低空氣污染,公交公司決定全部更換節(jié)能環(huán)保的燃氣公交車.計劃購買A型和B型兩種公交車共10輛,其中每臺的價格,年均載客量如表:

A

B

價格(萬元/輛)

a

b

年均載客量(萬人//輛)

60

100

若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元

(1)求購買每輛A型公交車和每輛B型公交車分別多少萬元?

(2)如果該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車年均載客總和不少于680萬人次,有哪幾種購車方案?請你設計一個方案,使得購車總費用最少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠C90°,AC3,BC4,分別以AC、BC、AB為直徑作半圓,如圖所示,則陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰RtABC中,∠BAC90°.點D從點B出發(fā)在線段BC移動,以AD為腰作等腰RtADE,∠DAE90°.連接CE

⑴如圖,求證:△ACE≌△ABD

⑵求證:BD2CD22AD2;

⑶若AB4,試問:△DCE的面積有沒有最大值,如沒有請說明理由,如有請求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為4,點F,G分別是AB,DC的中點,將點A折到FG上的點P處,折痕為BE,點EAD上,則AE長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點O是菱形ABCD對角線的交點,CE∥BD,EB∥AC,連接OE,交BCF

1)求證:OE=CB;

2)如果OC: OB=12OE=,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在運動會徑賽中,甲、乙同時起跑,剛跑出200m,甲不慎摔倒,他又迅速地爬起來繼續(xù)投入比賽,若他們所跑的路程ym)與比賽時間xs)的關系如圖,有下列說法:①他們進行的是800m比賽;②乙全程的平均速度為6.4m/s;③甲摔倒之前,乙的速度快;④甲再次投入比賽后的平均速度為7.5m/s;⑤甲再次投入比賽后在距離終點300米時追上了乙.其中正確的個數(shù)有(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】金山超市現(xiàn)有甲、乙兩種糖果若干kg,兩種糖果的售價和進價如表

糖果

甲種

乙種

售價

36/kg

20/kg

進價

30/kg

16/kg

(1)超市準備用甲、乙兩種糖果混合成雜拌糖出售,混合后糖果的售價是27.2/kg,現(xiàn)要配制這種雜拌糖果100/kg,需要甲、乙兩種糖果各多少千克?

(2)“六一兒童節(jié)前夕,超市準備用5000元購進甲、乙兩種糖果共200kg,如何進貨才能使這批糖果獲得最大利潤,最大利潤是多少?(注:進貨量只能為整數(shù))

查看答案和解析>>

同步練習冊答案