如圖,長(zhǎng)為2,寬為的矩形紙片(),剪去一個(gè)邊長(zhǎng)等于矩形寬度的正方形(稱為第一次操作);

(1)第一次操作后剩下的矩形長(zhǎng)為,寬為         

(2)再把第一次操作后剩下的矩形剪去一個(gè)邊長(zhǎng)等于此時(shí)矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.

①求第二次操作后剩下的矩形的面積;

②若在第3次操作后,剩下的圖形恰好是正方形,求的值.

 

 

 

【答案】

(1)2- 

(2)第二次操作后剩下的矩形的邊長(zhǎng)分別為:2-,2-2 

 面積為:(2-)(2-2)=-22+6-4  

(3)當(dāng)2->2-2, <時(shí)  2-=2(2-2)   8分    = 

 當(dāng)2-<2-2, >時(shí)  2(2-)=2-2  10分    = 

 綜合得=.

【解析】(1)根據(jù)圖形的特征易得結(jié)果;

(2)①先算出第二次操作后剩下的矩形的邊長(zhǎng)即可得到面積。②先算出第三次操作后剩下的矩形

的長(zhǎng)和寬,根據(jù)正方形的邊長(zhǎng)相等得到關(guān)于a的方程,即可求出a。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•青島)在前面的學(xué)習(xí)中,我們通過對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式.
這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

【研究速算】
提出問題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫長(zhǎng)為47,寬為43的矩形,如圖3,將這個(gè)47×43的矩形從右邊切下長(zhǎng)40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果.
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果

【研究方程】
提出問題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫四個(gè)長(zhǎng)為x+2,寬為x的矩形,構(gòu)造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,(x+x+2)2或四個(gè)長(zhǎng)x+2,寬x的矩形面積之和,加上中間邊長(zhǎng)為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并注明相關(guān)線段的長(zhǎng))
【研究不等關(guān)系】
提出問題:怎樣運(yùn)用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
幾何建模:
(1)畫長(zhǎng)y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫點(diǎn)部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當(dāng)a>2,b>2時(shí),表示ab與a+b的大小關(guān)系.
根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖并注明相關(guān)線段的長(zhǎng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),有A型、B型、C型三種不同的紙板,其中A形是邊長(zhǎng)為m的正方形,B型是長(zhǎng)為m、寬為n的長(zhǎng)方形,C型是邊長(zhǎng)為n的正方形.由圖(2)中四塊紙板拼成的正方形的面積關(guān)系可以說明(m+n)2=m2+2mn+n2成立.

(1)類似地,由圖(3)中六塊紙板拼成的大長(zhǎng)方形的面積關(guān)系可以說明的等式是
(m+n)(2m+n)=2m2+3mn+n2
(m+n)(2m+n)=2m2+3mn+n2

(2)現(xiàn)有A型紙板2塊,B型紙板5塊,C型紙板2塊,要求緊密且不重疊地拼出一個(gè)大長(zhǎng)方形,如果紙板最多剩一塊,請(qǐng)畫出所有可能拼出的大長(zhǎng)方形的示意圖;類似地,根據(jù)所拼出的大長(zhǎng)方形的面積關(guān)系寫出可以說明的等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,長(zhǎng)為2,寬為a的矩形紙片(1<a<2),剪去一個(gè)邊長(zhǎng)等于矩形寬度的正方形(稱為第一次操作);
(1)第一次操作后剩下的矩形長(zhǎng)為a,寬為
2-a
2-a
;
(2)再把第一次操作后剩下的矩形剪去一個(gè)邊長(zhǎng)等于此時(shí)矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.
①求第二次操作后剩下的矩形的面積;
②若在第3次操作后,剩下的圖形恰好是正方形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建省永春縣八年級(jí)上學(xué)期期末數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,長(zhǎng)為2,寬為的矩形紙片(),剪去一個(gè)邊長(zhǎng)等于矩形寬度的正方形(稱為第一次操作);
(1)第一次操作后剩下的矩形長(zhǎng)為,寬為         ;
(2)再把第一次操作后剩下的矩形剪去一個(gè)邊長(zhǎng)等于此時(shí)矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.
①求第二次操作后剩下的矩形的面積;
②若在第3次操作后,剩下的圖形恰好是正方形,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案