菱形和矩形一定都具有的性質(zhì)是( 。
A、對角線相等B、對角線互相垂直C、對角線互相平分且相等D、對角線互相平分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一個多邊形紙片按圖示的剪法剪去一個內(nèi)角后,得到一個內(nèi)角和為2340°的新多邊形,則原多邊形的邊數(shù)為(  )
A、13B、14C、15D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖①,在△ABC中,∠C=90°,∠BAC=60°,AC=1,以AB為一邊在△ABC的異側(cè)作正方形ABDE,△AFG是由△ABC繞點A旋轉(zhuǎn)而得,且點F,A,C在同一條直線上.

(1)設(shè)FG與AE的交點為H,求AH的長;
(2)若將△AFG沿著射線AB方向平移,當(dāng)△AFG與正方形ABDE沒有重疊部分時停止移動,設(shè)平移的距離為m,△AFG與正方形ABDE重疊部分的面積為S.請直接寫出S與m之間的函數(shù)關(guān)系式以及自變量m的取值范圍;
(3)如圖②,將△ABC繞點A順時針旋轉(zhuǎn)α°(0<α<180),記旋轉(zhuǎn)中的△ABC為△AB′C′,在旋轉(zhuǎn)過程中,設(shè)B′C′所在的直線與直線BC交于點P,與直線AB交于點Q,是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出此時α的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
如圖1,△ABC和△CDE都是等邊三角形,且點A、C、E在一條直線上,可以證明△ACD≌△BCE,則AD=BE.

解決問題:
(1)將圖1中的△CDE繞點C旋轉(zhuǎn)到圖2,猜想此時線段AD與BE的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)如圖2,連接BD,若AC=2cm,CE=1cm,現(xiàn)將△CDE繞點C繼續(xù)旋轉(zhuǎn),則在旋轉(zhuǎn)過程中,△BDE的面積是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(3)如圖3,在△ABC中,點D在AC上,點E在BC上,且DE∥AB,將△DCE繞點C按順時針方向旋轉(zhuǎn)得到三角形CD′E′(使∠ACD′<180°),連接BE′,AD′,設(shè)AD′分別交BC、BE′于O、F,若△ABC滿足∠ACB=60°,BC=
3
,AC=
2
,
①求
BE′
AD′
的值及∠BFA的度數(shù);
②若D為AC的中點,求△AOC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個菱形兩條對角線之比為1:2,一條較短的對角線長為4cm,那么菱形的邊長為( 。
A、2cm
B、4cm
C、(2+2
5
)cm
D、2
5
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是邊長為13cm的菱形,其中對角線BD的長為10cm,則對角線AC的長度為( 。ヽm.
A、12B、2C、24D、26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

菱形的兩條對角線長分別為6cm和8cm,則菱形的邊長是( 。
A、10cmB、7cmC、5cmD、4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖四邊形ABCD是菱形,對角線AC=8,BD=6,DH⊥AB于點H,則DH的長度是( 。
A、
12
5
B、
16
5
C、
24
5
D、
48
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

方程px+q=99的解為x=1,p、q均為質(zhì)數(shù),則pq的值為( 。
A.194B.197C.199D.201

查看答案和解析>>

同步練習(xí)冊答案