已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時方程的兩個根;
(3)若A、B是平面直角坐標系中x軸上的兩個點,點B在點A的左側(cè),且點A、B的橫坐l標分別是(2)中方程的兩個根,以線段AB為直徑在x軸的上方作半圓P,設(shè)直線的解析l式為y=x+b,若直線與半圓P只有兩個交點時,求出b的取值范圍.
分析:(1)根據(jù)根的判別式直接得出△=(2m+2)2-4m(m-1)=12m+4≥0求出即可;
(2)利用(1)中所求得出m的值,進而代入方程求出即可;
(3)①當直線l 經(jīng)過原點O時與半圓P有兩個交點,即b=0,
②當直線l與半圓P相切于D點時有一個交點,如圖由題意可得Rt△EDP、Rt△ECO是等腰直角三角形,進而求出b的最值大值即可.
解答:解:(1)∵關(guān)于x的一元二次方程,m≠0,
∵關(guān)于x的一元二次方程有實根,
∴△=(2m+2)2-4m(m-1)=12m+4≥0,
解得m≥-
1
3
,
∴當m≥-
1
3
且 m≠0時此方程有實根;

(2)
∵在(1)的條件下,當m取最小的整數(shù)
∴m=1,
∴原方程化為:x2-4x=0,
x(x-4)=0,
解得:x1=0,x2=4;

(3)解:如圖所示:①當直線l經(jīng)過原點O時與半圓P有兩個交點,即b=0,
②當直線l與半圓P相切于D點時有一個交點,
∵y=x+b,當b=0則y=x,故可得Rt△EDP、Rt△ECO是等腰直角三角形,
∵DP=2,∴EP=
22+22
=2
2

∴OC=2
2
-2
,即b=2
2
-2
,
∴當0≤b<2
2
-2
時,直線l與半圓P只有兩個交點.
點評:此題主要考查了一元二次方程根的判別式以及一元二次方程的解法和勾股定理以及切線的性質(zhì)等知識,利用數(shù)形結(jié)合得出b的最值是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求證:方程①有兩個實數(shù)根;
(2)求證:方程①有一個實數(shù)根為1;
(3)設(shè)方程①的另一個根為x1,若m+n=2,m為正整數(shù)且方程①有兩個不相等的整數(shù)根時,確定關(guān)于x的二次函數(shù)y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的條件下,把Rt△ABC放在坐標系內(nèi),其中∠CAB=90°,點A、B的坐標分別為(1,0)、(4,0),BC=5,將△ABC沿x軸向右平移,當點C落在拋物線上時,求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:關(guān)于x的一元二次方程ax2+bx+c=3的一個根為x=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點坐標為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2(m+1)x+m2=0有兩個整數(shù)根,m<5且m為整數(shù).
(1)求m的值;
(2)當此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=x2-2(m+1)x+m2的圖象沿x軸向左平移4個單位長度,求平移后的二次函數(shù)圖象的解析式;
(3)當直線y=x+b與(2)中的兩條拋物線有且只有三個交點時,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個實數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當-2<x≤2時,y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點A、B(A左B右),頂點為點C,問:是否存在這樣的點P,以P為位似中心,將△ABC放大為原來的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•延慶縣二模)已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時方程的兩個根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個交點,連接這兩點間的線段,并以這條線段為直徑在x軸的上方作半圓P,設(shè)直線l的解析式為y=x+b,若直線l與半圓P只有兩個交點時,求出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案