【題目】有理數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)位置如圖所示
(1)用“<”連接0、﹣a、﹣b、﹣1
(2)化簡(jiǎn):|a|﹣2|a+b﹣1|﹣ |b﹣a﹣1|
(3)若a2c+c<0,且c+b>0,求 + ﹣ 的值.
【答案】
(1)解:∵a<﹣1<0<b<1,
∴﹣1<﹣b<0<﹣a
(2)解:由圖可知:a<0,a+b﹣1<0,b﹣a﹣1>0
∴原式=﹣a﹣2(﹣a﹣b+1)﹣ (b﹣a﹣1)= a+ b﹣
(3)解:∵a2c+c<0
∴c<0
∵c+b>0
∴|c|<|b|
∴原式=1﹣1﹣(﹣1)=1
【解析】根據(jù)數(shù)軸即可比較大小,然后再化簡(jiǎn).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)軸和絕對(duì)值的相關(guān)知識(shí)可以得到問題的答案,需要掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線;正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】0是極為重要的數(shù)字,0的發(fā)現(xiàn)被稱為人類偉大的發(fā)現(xiàn)之一.0在我國古代叫做金元數(shù)字,意即極為珍貴的數(shù)字.下列關(guān)于數(shù)0的說法中不正確的是
A. 0既不是正數(shù)也不是負(fù)數(shù) B. 0是絕對(duì)值等于它本身的數(shù)
C. 0是相反數(shù)等于它本身的數(shù) D. 0是倒數(shù)等于它本身的數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組算式中,其值最小的是( 。
A. -(-3-2)2 B. (-3)×(-2) C. (-3)2×(-2) D. (-3)÷(-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】最短路徑問題:
例:如圖所示,要在街道旁修建一個(gè)奶站,向居民區(qū)A、B提供牛奶,奶站應(yīng)建在什么地方,才能使從A、B到它的距離之和最短.
解:只有A、C、B在一直線上時(shí),才能使AC+BC最小.作點(diǎn)A關(guān)于直線“街道”的對(duì)稱點(diǎn)A′,然后連接A′B,交“街道”于點(diǎn)C,則點(diǎn)C就是所求的點(diǎn).
應(yīng)用:已知:如圖A是銳角∠MON內(nèi)部任意一點(diǎn),
在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長最小.
(1)借助直角三角板在下圖中找出符合條件的點(diǎn)B和C.
(2)若∠MON=30°,OA=10,求三角形的最小周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以每秒2厘米的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以每秒a厘米的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點(diǎn)P、Q的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請(qǐng)說明理由;
(3)若點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度a為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com