精英家教網(wǎng)如圖,已知AB是⊙O的直徑,BC是⊙O的切線,切點為B,OC平行于弦AD,OA=2.
(1)求證:DC是⊙O的切線;
(2)求AD•OC的值;
(3)若AD+OC=9,求CD的長.
分析:(1)連接OD,由BC是⊙O的切線得到∠B=90°,然后證明△OCD≌△OCB,得到∠ODC=90°,
(2)根據(jù)題干條件證明△ADB∽△ODC,得到AD•OC的值,
(3)在Rt△ODC中,利用勾股定理即可解得CD的長.
解答:精英家教網(wǎng)證明:(1)連接OD,
∵BC是⊙O的切線,
∴∠B=90°,
∵AD∥OC,
∴∠1=∠3,∠2=∠4
∵OA=OD,
∴∠2=∠3=∠1=∠4,
∵OB=OD,OC=OC,
∴△OCD≌△OCB,
∴∠ODC=90°,又∵CD過半徑OD的外端點D,
∴DC是⊙O的切線;(4分)
精英家教網(wǎng)
(2)連接BD,
∵OC∥AD∴∠1=∠3=∠2,
又∠ADB=∠ODC=90°,
∴△ADB∽△ODC,
AD
OD
=
AB
OC
,
AD•OC=OD•AB=8;(8分)

(3)∵AD•OC=8,AD+OC=9,
∴AD=1,OC=8或AD=8,OC=1(不合題意,舍去),
CD=
82-22
=2
15
.(12分)
點評:本題考查了切線的判定,相似三角形的判定和性質(zhì)等知識點.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結論不成立的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案