【題目】已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過(guò)E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.
(1)請(qǐng)問(wèn)EG與CG存在怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(wèn)(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(wèn)(1)中的結(jié)論是否仍然成立?(請(qǐng)直接寫(xiě)出結(jié)果,不必寫(xiě)出理由)
【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)結(jié)論仍然成立
【解析】
(1)利用直角三角形斜邊上的中線等于斜邊的一半,可證出CG=EG.
(2)結(jié)論仍然成立,連接AG,過(guò)G點(diǎn)作MN⊥AD于M,與EF的延長(zhǎng)線交于N點(diǎn);再證明△DAG≌△DCG,得出AG=CG;再證出△DMG≌△FNG,得到MG=NG;再證明△AMG≌△ENG,得出AG=EG;最后證出CG=EG.
(3)結(jié)論依然成立.
(1)CG=EG.理由如下:
∵四邊形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G為DF的中點(diǎn),∴CG=FD,同理.在Rt△DEF中,EG=FD,∴CG=EG.
(2)(1)中結(jié)論仍然成立,即EG=CG.
證法一:連接AG,過(guò)G點(diǎn)作MN⊥AD于M,與EF的延長(zhǎng)線交于N點(diǎn).
在△DAG與△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;
在△DMG與△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG.
∵∠EAM=∠AEN=∠AMN=90°,∴四邊形AENM是矩形,在矩形AENM中,AM=EN.在△AMG與△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.
證法二:延長(zhǎng)CG至M,使MG=CG,連接MF,ME,EC.在△DCG與△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.
在Rt△MFE與Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE
∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC為直角三角形.
∵MG=CG,∴EG=MC,∴EG=CG.
(3)(1)中的結(jié)論仍然成立.理由如下:
過(guò)F作CD的平行線并延長(zhǎng)CG交于M點(diǎn),連接EM、EC,過(guò)F作FN垂直于AB于N.
由于G為FD中點(diǎn),易證△CDG≌△MFG,得到CD=FM,又因?yàn)?/span>BE=EF,易證∠EFM=∠EBC,則△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.
∵G為CM中點(diǎn),∴EG=CG,EG⊥CG
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)探究新知:如圖1,已知與的面積相等,試判斷與的位置關(guān)系,并說(shuō)明理由.
(2)結(jié)論應(yīng)用:
①如圖2,點(diǎn),在反比例函數(shù)的圖像上,過(guò)點(diǎn)作軸,過(guò)點(diǎn)作軸,垂足分別為,,連接.試證明:.
②若①中的其他條件不變,只改變點(diǎn),的位置如圖3所示,請(qǐng)畫(huà)出圖形,判斷與的位置關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某一小球以一定的初速度開(kāi)始向前滾動(dòng),并且均勻減速,小球滾動(dòng)的速度v(單位:米/秒)與時(shí)間x(單位:秒)之間關(guān)系的部分?jǐn)?shù)據(jù)如表一:
表一:
時(shí)間x(秒) | 0 | 1 | 2 | 2.5 | 3 | … |
速度v(米/秒) | 8 | 6 | 4 | 3 | 2 | … |
(1)根據(jù)表一的信息,請(qǐng)?jiān)诒矶刑顚?xiě)滾動(dòng)的距離s(單位:米)的對(duì)應(yīng)值,(提示:本題中,s=×x, =,其中,v0表示開(kāi)始時(shí)的速度,vx表示x秒時(shí)的速度.)
表二:
時(shí)間x(秒) | 0 | 1 | 2 | 3 | … |
距離s(米) | 0 | … |
(2)根據(jù)表二中的數(shù)據(jù)在給出的平面坐標(biāo)系中畫(huà)出相應(yīng)的點(diǎn);
(3)選擇適當(dāng)?shù)暮瘮?shù)表示s與x之間的關(guān)系,求出相應(yīng)的函數(shù)解析式;
(4span>)當(dāng)s=13.75時(shí),求滾動(dòng)時(shí)間x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤(pán)做游戲(每個(gè)轉(zhuǎn)盤(pán)被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)動(dòng)甲、乙轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請(qǐng)用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于的方程.
(1)不解方程,判斷方程的根的情況;
(2)若為等腰三角形,腰,另外兩條邊是方程的 兩個(gè)根,求此三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華周一早展起來(lái),步行到離家900米的學(xué)校去上學(xué),到了學(xué)校他發(fā)現(xiàn)數(shù)學(xué)課本忘在家中了,于是他立即按照原路步行回家,拿到數(shù)學(xué)課本后立即按照原路改騎自行車(chē)返回學(xué)校,已知小華騎自行車(chē)的速度是他步行速度的3倍,步行從學(xué)校到家所用的時(shí)間比他騎自行車(chē)從家到學(xué)校所用的時(shí)間多10分鐘. 小華騎自行車(chē)的速度是多少米每分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b、c在數(shù)軸上對(duì)應(yīng)的點(diǎn)如圖所示,
(1)化簡(jiǎn):2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;
(2)若(c+4)2與|a+c+10|互為相反數(shù),且b=|a﹣c|,求(1)中式子的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一個(gè)長(zhǎng)時(shí)間沒(méi)有使用的彈簧測(cè)力計(jì),經(jīng)刻度盤(pán),指針,吊環(huán),掛鉤等個(gè)部件都齊全,但小明還是對(duì)其準(zhǔn)確程度表示懷疑,于是他利用數(shù)學(xué)知識(shí)對(duì)這個(gè)彈簧測(cè)力計(jì)進(jìn)行檢驗(yàn)。下表是他記錄的數(shù)據(jù)的一部分:
彈簧所掛物體的質(zhì)量(單位:㎏) | 0 | 0.1 | 0.2 | 0.3 | 0.4 |
彈簧的長(zhǎng)度(單位cm) | 12 | 12.5 | 13 | 13.5 | 14 |
在整理數(shù)據(jù)的過(guò)程中,他發(fā)現(xiàn)在所掛物體的質(zhì)量不超過(guò)1㎏時(shí),彈簧的長(zhǎng)度與彈簧所掛物體的質(zhì)量之間存在著函數(shù)關(guān)系,于是彈簧所掛物體的質(zhì)量x㎏,彈簧的長(zhǎng)度為ycm。
(1)請(qǐng)你利用如圖2的坐標(biāo)系,描點(diǎn)并畫(huà)出函數(shù)的大致圖象。
(2)根據(jù)函數(shù)圖象,猜想y與x之間是怎樣的函數(shù),求出對(duì)應(yīng)的函數(shù)解析式。
(3)你認(rèn)為該測(cè)力計(jì)是否可以正常使用,如果可以,請(qǐng)你求出所掛物體的質(zhì)量為1㎏時(shí),彈簧的長(zhǎng)度;如果不可以,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李老師準(zhǔn)備購(gòu)買(mǎi)若干個(gè)某種筆記本獎(jiǎng)勵(lì)學(xué)生,甲、乙兩家商店都有足夠數(shù)量的這種筆記本,其標(biāo)價(jià)都是每個(gè)6元,甲商店的促銷方案是:購(gòu)買(mǎi)這種筆記本數(shù)量不超過(guò)5個(gè)時(shí),原價(jià)銷售;超過(guò)5個(gè)時(shí),超過(guò)部分按原價(jià)的7折銷售.乙商店的銷售方案是:一律按標(biāo)價(jià)的8折銷售.
(1)若李老師要購(gòu)買(mǎi)個(gè)這種筆記本,請(qǐng)用含的式子分別表示李老師到甲商店和乙商店購(gòu)買(mǎi)全部這種筆記本所需的費(fèi)用.
(2)李老師購(gòu)買(mǎi)多少個(gè)這種筆記本時(shí),到甲、乙兩家商店購(gòu)買(mǎi)所需費(fèi)用相同?
(3)若李老師需要20個(gè)這種筆記本,則到甲、乙哪家商店購(gòu)買(mǎi)更優(yōu)惠?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com