【題目】如圖,射線AM上有一點B,AB=6,點C是射線AM上異于B的一點,過C作CD⊥AM,且CD= AC,過D點作DE⊥AD,交射線AM于E,在射線CD取點F,使得CF=CB,連接AF并延長,交DE于點G,設AC=3x.
(1)當C在B點右側(cè)時,求AD.DF的長.(用關于x的代數(shù)式表示)
(2)當x為何值時,△AFD是等腰三角形;
(3)作點D關于AG的對稱點D′,連接FD′,GD′,若四邊形DFD′G是平行四邊形,求x的值.(直接寫出答案)
【答案】
(1)
解:∵CD= ,AC=3x,
∴CD=4x,
∵CD⊥AM,
∴∠ACD=90°,
由勾股定理得:AD=5x,
∵AB=6,C在B點右側(cè),
∴BC=AC﹣AB=3x﹣6,
∵BC=FC=3x﹣6,
∴DF=CD﹣FC=4x﹣(3x﹣6)=x+6
(2)
解:分兩種情況:
①當C在B點的右側(cè)時,
∴AC>AB,
∴F必在線段CD上,
∵∠ACD=90°,
∴∠AFD是鈍角,若△ADF為等腰三角形,只可能AF=DF,過F作FN⊥AD于N,如圖2,
∴AN=ND=2.5x,
cos∠ADC= = ,
,
x= ;
②當C在線段AB上時,同理可知若△ADF為等腰三角形,只可能AF=DF,
i)當CF<CD時,過F作FN⊥AD于N,如圖3,
∵AB=6,AC=3x,
∴BC=CF=6﹣3x,
∴DF=4x﹣(6﹣3x)=7x﹣6,
cos∠ADC= ,
∴ ,
x= ,
ii)當CF>CD時,如圖4,
BC=CF=6﹣3x,
∴FD=AD=6﹣3x﹣4x=6﹣7x,
則6﹣7x=5x,
x= ,
綜上所述,當x= 或 或 時,△AFD是等腰三角形
(3)
解:∵四邊形DFD′G是平行四邊形,且DF=D′F,
∴DFD′G是菱形,
∴DF=DG,
∴∠DFG=∠DGF,
∵∠AFC=∠DFG,
∴∠DGF=∠AFC,
∵∠ACD=∠ADG=90°,
∴∠FAC=∠DAG,
即AF平分∠DAC,
過F作FN⊥AD于N,
當C在AB的延長線上時,如圖2,
FN=FC=3x﹣6,DF=x+6,
sin∠CDA= ,
解得:x=4,
當C在AB邊上時,如圖5,
FN=FC=6﹣3x,
DF=7x﹣6,
sin∠CDA= = ,
x= ,
綜上所述,若四邊形DFD′G是平行四邊形,x的值是4或
【解析】(1)由已知條件可得:CD=4x,根據(jù)勾股定理得:AD=5x,由AB=6且C在B點右側(cè),可以依次表示BC、CF、DF的長;(2)分兩種情況:①當C在B點的右側(cè)時,AF=DF,②當C在線段AB上時,又分兩種情況:i)當CF<CD時,如圖3,ii)當CF>CD時,如圖4,由AF=DF,作等腰三角形的高線FN,由等腰三角形三線合一得:AN=ND=2.5x,利用同角的三角函數(shù)列比例式可求得x的值;(3)先根據(jù)四邊形DFD′G是平行四邊形證明它為菱形,由角的關系得:AF平分∠DAC,作輔助線,由角平分線的性質(zhì)得:FN=FC,根據(jù)第2問分兩種情況進行計算,根據(jù)同角的三角函數(shù)列式可求得x的值.
科目:初中數(shù)學 來源: 題型:
【題目】在三角形紙片ABC中,∠A=90°,∠C=30°,AC=30cm,將該紙片沿過點B的直線折疊,使點A落在斜邊BC上的一點E處,折痕記為BD(如圖1),減去△CDE后得到雙層△BDE(如圖2),再沿著過△BDE某頂點的直線將雙層三角形剪開,使得展開后的平面圖形中有一個是平行四邊形,則所得平行四邊形的周長為cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“世界那么大,我想去看看”一句話紅遍網(wǎng)絡,騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場.順風車行經(jīng)營的A型車2015年6月份銷售總額為3.2萬元,今年經(jīng)過改造升級后A型車每輛銷售價比去年增加400元,若今年6月份與去年6月份賣出的A型車數(shù)量相同,則今年6月份A型車銷售總額將比去年6月份銷售總額增加25%.
(1)求今年6月份A型車每輛銷售價多少元(用列方程的方法解答);
(2)該車行計劃7月份新進一批A型車和B型車共50輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲利最多? A、B兩種型號車的進貨和銷售價格如表:
A型車 | B型車 | |
進貨價格(元/輛) | 1100 | 1400 |
銷售價格(元/輛) | 今年的銷售價格 | 2400 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=﹣x+1與反比例函數(shù) ,x與y的對應值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 1 | 2 | 3 |
y=﹣x+1 | 4 | 3 | 2 | 0 | ﹣1 | ﹣2 |
1 | 2 | ﹣2 | ﹣1 | ﹣ |
不等式﹣x+1>﹣ 的解為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形,建立如圖所示的平面直角坐標系,點C的坐標為(0,﹣1).
(1)在如圖的方格紙中把△ABC以點O為位似中心擴大,使放大前后的位似比為1:2,畫出△A1B2C2(△ABC與△A1B2C2在位似中心O點的兩側(cè),A,B,C的對應點分別是A1 , B2 , C2).
(2)利用方格紙標出△A1B2C2外接圓的圓心P,P點坐標是 , ⊙P的半徑= . (保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把大小完全相同的6個乒乓球分成兩組,每組3個,每組乒乓球上面分別標有數(shù)字1,2,3,將這兩組乒乓球分別放入兩個盒子中攪勻,再從每個盒子中各隨機取出1個乒乓球,請用畫樹狀圖(或列表)的方法,求取出的2個乒乓球上面數(shù)字之和為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一個60°角的三角形紙片,剪去這個60°角后,得到一個四邊形,則∠1+∠2的度數(shù)為( )
A.120°
B.180°
C.240°
D.300°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點為A,經(jīng)過點B(0,3)和點(2,3),與x軸交于C,D兩點,(點C在點D的左側(cè)),且OD=OB.
(1)求這條拋物線的表達式;
(2)連接AB,BD,DA,試判斷△ABD的形狀;
(3)點P是BD上方拋物線上的動點,當P運動到什么位置時,△BPD的面積最大?求出此時點P的坐標及△BPD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com