【題目】如圖1,△ABC、△DCE均為等邊三角形,當B、C、E三點在同一條直線上時,連接BD、AE交于點F,易證:△ACE≌△BCD.聰明的小明將△DCE繞點C旋轉(zhuǎn)的過程中發(fā)現(xiàn)了一些不變的結(jié)論,讓我們一起開啟小明的探索之旅!
(探究一)如圖2,當B、C、E三點不在同一條直線上時,小明發(fā)現(xiàn)∠BFE的大小沒有發(fā)生變化,請你幫他求出∠BFE的度數(shù).
(探究二)閱讀材料:在平時的練習中,我們曾探究得到這樣一個正確的結(jié)論:兩個全等三角形的對應邊上的高相等.例如:如圖3,如果△ABC≌△A’B’C’,AD、A’D’分別是△ABC、△A’B’C’的邊BC、B’C’上的高,那么容易證明AD=A’D’.小明帶著這樣的思考又有了新的發(fā)現(xiàn):如圖4,若連接CF,則CF平分∠BFE,請你幫他說明理由.
(探究三)在探究二的基礎上,小明又進一步研究發(fā)現(xiàn),線段AF、BF、CF之間還存在一定的數(shù)量關系,請你寫出它們之間的關系,并說明理由.
【答案】(1) (2)CF平分∠BFE (3)BF=AF+CF
【解析】
探究一:先證明,得出,又根據(jù)對頂角相等,得出,最后得出,得出.
探究二:過點C作,,垂足分別為M、N,可證,根據(jù),,可得CF平分∠BFE.
探究三:在AB上取一點H,使得,先證,得到,根據(jù)探究一、二,得:,為等邊三角形,得到BF=BH+HF=AF+CF,即BF=AF+CF.
(1)解:∵△ABC和△DCE均為等邊三角形
∴AC=BC,CD=CE,
∠ACB=∠DCE=60°
∴∠BCD=∠ACE
在△BCD和△ACE中,
∴
∴
又∵
∴
∴
(2)過點C作,,垂足分別為M、N,由探究一得:
∴
又∵,
∴CF平分∠BFE.
(3)在AB上取一點H,使得
由得:
∠CAE=∠CBD
在△BCH和△ACF中,
∴
∴
由探究一、二,得:
∴為等邊三角形
∴CF=CH=CF
∴BF=BH+HF=AF+CF
即BF=AF+CF.
科目:初中數(shù)學 來源: 題型:
【題目】在一次研究性學習活動中,同學們看到了工人師傅在木板上畫一個直角三角形的過程(如圖所示):畫線段AB,過點A任作一條直線l,以點A為圓心,以AB長為半徑畫弧,與直線l相交于兩點C、D,連接BC和BD.則△BCD就是直角三角形.
(1)請你說明△BCD是直角三角形的道理;
(2)請利用上述方法作一個直角三角形,使其中一個銳角為60°(不寫作法,保留作圖
痕跡,在圖中注明60°的角).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,點在邊上且點到點的距離與點到點的距離相等.
(1)利用尺規(guī)作圖作出點,不寫作法但保留作圖痕跡.
(2)連接,若,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校計劃選購甲、乙兩種圖書作為“校園讀書節(jié)”的獎品.已知甲圖書的單價是乙圖書單價的倍;用元單獨購買甲種圖書比單獨購買乙種圖書要少本.
(1)甲、乙兩種圖書的單價分別為多少元?
(2)若學校計劃購買這兩種圖書共本,且投入的經(jīng)費不超過元,要使購買的甲種圖書數(shù)量不少于乙種圖書的數(shù)量,則共有幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P (x,y),若點Q的坐標為(ax+y,x+ay), 其中a為常數(shù),則稱點Q是點P的“a級關聯(lián)點",例如,點P(1,4)的“3級關聯(lián)點"為Q (3×1+4,1+3×4), 即Q (7,13)。
(1)已知點A (-2,6)的“級關聯(lián)點”是點A1,點B的“2級關聯(lián)點”是B1 (3, 3), 求點A1和點B的坐標:
(2)已知點M (m-1, 2m)的“-3級關聯(lián)點"M位于坐標軸上,求M的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),連接AF,BE相交于點P.
(1)若AE=CF;
①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當點E從點A運動到點C時,試求點P經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用(-1,0)表示A點的位置,用(2,1)表示B點的位置,那么:
(1)畫出直角坐標系。
(2)寫出△DEF的三個頂點的坐標。
(3)在圖中表示出點M(6,2),N(4,4)的位置。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com