【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)A,B,使得∠APB=60°,則稱P⊙C 的關(guān)聯(lián)點(diǎn)。已知點(diǎn)D,),E0,-2),F,0

1)當(dāng)⊙O的半徑為1時(shí),

在點(diǎn)D,EF中,⊙O的關(guān)聯(lián)點(diǎn)是 ;

過點(diǎn)F作直線交y軸正半軸于點(diǎn)G,使∠GFO=30°,若直線上的點(diǎn)Pm,n)是⊙O的關(guān)聯(lián)點(diǎn),求m的取值范圍;

2)若線段EF上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),求這個(gè)圓的半徑r的取值范圍。

【答案】1①DE②0≤m≤2r≥1

【解析】

解:

1)①根據(jù)關(guān)聯(lián)點(diǎn)的定義,得出E點(diǎn)是⊙O的關(guān)聯(lián)點(diǎn),進(jìn)而得出F、D,與⊙O的關(guān)系:

如圖1所示,過點(diǎn)E作⊙O的切線設(shè)切點(diǎn)為R,

∵⊙O的半徑為1,∴RO=1。

EO=2,∴∠OER=30°。

根據(jù)切線長定理得出⊙O的左側(cè)還有一個(gè)切點(diǎn),使得組成的角等于30°。

E點(diǎn)是⊙O的關(guān)聯(lián)點(diǎn)。

D),E0,-2),F2,0),

OFEO,DOEO。

D點(diǎn)一定是⊙O的關(guān)聯(lián)點(diǎn),而在⊙O上不可能找到兩點(diǎn)使得組成的角度等于60°。故在點(diǎn)D、EF中,⊙O的關(guān)聯(lián)點(diǎn)是D,E。

②由題意可知,若P要?jiǎng)偤檬恰?/span>C的關(guān)聯(lián)點(diǎn),需要點(diǎn)P到⊙C的兩條切線PAPB之間所夾的角為60°。

由圖2可知∠APB=60°,則∠CPB=30°,

連接BC,則,

∴若P點(diǎn)為⊙C的關(guān)聯(lián)點(diǎn),則需點(diǎn)P到圓心的距離d滿足0≤d≤2r。

由(1),考慮臨界點(diǎn)位置的P點(diǎn),

如圖3,


點(diǎn)P到原點(diǎn)的距離OP=2×1=2,

過點(diǎn)Ox軸的垂線OH,垂足為H,

。

∴∠OGF=60°。

OH=OGsin60°=,

∴∠OPH=60°。可得點(diǎn)P1與點(diǎn)G重合。

過點(diǎn)P2P2Mx軸于點(diǎn)M,可得∠P2OM=30°,

OM=OP2cos30°=。

∴若點(diǎn)P為⊙O的關(guān)聯(lián)點(diǎn),則P點(diǎn)必在線段P1P2上。

0≤m≤。

2)若線段EF上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),欲使這個(gè)圓的半徑最小,則這個(gè)圓的圓心應(yīng)在線段EF的中點(diǎn)。

考慮臨界情況,如圖4,

即恰好E、F點(diǎn)為⊙K的關(guān)聯(lián)時(shí),則KF=2KN=EF=2,此時(shí),r=1

∴若線段EF上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),這個(gè)圓的半徑r的取值范圍為r≥1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組為測量校園主教學(xué)樓AB的高度,由于教學(xué)樓底部不能直接到達(dá),故興趣小組在平地上選擇一點(diǎn)C,用測角器測得主教學(xué)樓頂端A的仰角為30°,再向主教學(xué)樓的方向前進(jìn)24米,到達(dá)點(diǎn)E處(C,E,B三點(diǎn)在同一直線上),又測得主教學(xué)樓頂端A的仰角為60°,已知測角器CD的高度為1.6米,請計(jì)算主教學(xué)樓AB的高度.(≈1.73,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)已知△ABC的兩邊AB、AC的長恰好是關(guān)于x的方程x2+(2k+3)x+k2+3k+2=0的兩個(gè)實(shí)數(shù)根,第三邊BC的長為5

(1) 求證:AB≠AC

(2) 如果△ABC是以BC為斜邊的直角三角形,求k的值

(3) 填空:當(dāng)k=________時(shí),△ABC是等腰三角形,△ABC的周長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A4,4)、B5,0)和原點(diǎn)OP為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Px軸的垂線,垂足為Dm,0),并與直線OA交于點(diǎn)C

1)求出二次函數(shù)的解析式;

2)當(dāng)點(diǎn)P在直線OA的上方時(shí),求線段PC的最大值;

3)當(dāng)m0時(shí),探索是否存在點(diǎn)P,使得△PCO為等腰三角形,如果存在,求出P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知∠DAC=90°,ABC是等邊三角形,點(diǎn)P為射線AD上任意一點(diǎn)(點(diǎn)P與點(diǎn)A不重合),連結(jié)CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點(diǎn)E.

(1)如圖1,猜想∠QEP=   °;

(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時(shí),其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;

(3)如圖3,若∠DAC=135°,ACP=15°,且AC=4,求BQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)αα180°)后與⊙O相切,則α的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:等腰三角形的底角與頂角度數(shù)的比值叫做等腰三角形的特征值.如圖,△ABC是以A為頂點(diǎn)的特征值的等腰三角形,在△ABC外有一點(diǎn)D,若∠ADB=∠ABC,AD4BD3,則∠ABC_____度,CD的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠B60°,PBC邊上一點(diǎn),將AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn)為P',連接CP'

1)畫出旋轉(zhuǎn)后示意圖;

2)連接PP',若∠BAP20°,求∠PP'C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°AB6,扇形BEF的半徑為6,圓心角為60°

1)連接DB,求證:∠DBF=∠ABE;

2)求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案