【題目】解下列方程組

1

2;

3

【答案】(1);(2;(3

【解析】

(1)首先由方程①求出x的值,然后將x的值代入②中,即可求出y的值.

(2) 方程組利用代入消元法求出解即可;

(3) 根據(jù)代入消元法,化三元一次方程組為二元一次方程組,再根據(jù)加減消元法,可得一元一次方程,求出一元一次方程的解,再逐步代入,可得方程組的解.

解:(1)由①得:x2,

x2代入②得:y5

則方程組的解為;

2,

+×4得:9x54,

解得:x6,

x6代入②得:y=﹣1,

則方程組的解為;

3)把①代入②得:2x3y+2y+x)=5

整理得:4xy5④,

把①代入③得:x+2y+y+x13

整理得:2x+3y13⑤,

×3+⑤得:14x28,

解得:x2,

x2代入④得:y3

x2,y3代入①得:z5,

則方程組的解為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.

(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點為D,求△ACD的面積(請在圖1中探索);
(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(請在圖2中探索).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的頂點坐標分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.

(1)證明四邊形ABCD是菱形,并求點D的坐標;
(2)求拋物線的對稱軸和函數(shù)表達式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點A1 , 作正方形A1B1C1B2 , 延長C1B2交直線l于點A2 , 作正方形A2B2C2B3 , 延長C2B3交直線l于點A3 , 作正方形A3B3C3B4 , …,依此規(guī)律,則A2016A2017=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDCF平分∠ECD,HCCF交直線ABH,AG平分∠HAEHCG,EJAGCFJ,∠AEC80°,則下列結(jié)論正確的有( 。﹤.

①∠BAE+ECD80°;②CG平分∠ICE;③∠AGC140°;④∠EJC﹣∠AGH90°

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰RtACB,∠ACB90°,ACBC,點AC分別在x軸、y軸的正半軸上.

1)如圖1,求證:∠BCO=∠CAO

2)如圖2,若OA5,OC2,求B點的坐標

3)如圖3,點C0,3),Q、A兩點均在x軸上,且SCQA18.分別以AC、CQ為腰在第一、第二象限作等腰RtCAN、等腰RtQCM,連接MNy軸于P點,OP的長度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+e與x軸交于點A(﹣3,0)、點B(9,0),與y軸交于點C,頂點為D,連接AD、DB,點P為線段AD上一動點.
(1)求拋物線的解析式;
(2)如圖1,過點P作BD的平行線,交AB于點Q,連接DQ,設(shè)AQ=m,△PDQ的面積為S,求S關(guān)于m的函數(shù)解析式,以及S的最大值;

(3)如圖2,拋物線對稱軸與x軸交與點G,E為OG的中點,F(xiàn)為點C關(guān)于DG對稱的對稱點,過點P分別作直線EF、DG的垂線,垂足為M、N,連接MN,直接寫出△PMN為等腰三角形時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCDCEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明:

如圖,BE平分∠ABD,DE平分∠BDC,且∠α+β=90°,求證:ABCD

證明:∵BE平分∠ABD(已知),∴∠ABD=2α(  )

DE平分∠BDC(  )

∴∠BDC=  (  ),∴∠ABD+BDC=2α+2β=2(α+β)(等量代換)

∵∠α+β=90°(已知),∴∠ABD+BDC=(  ),∴ABCD(  )

查看答案和解析>>

同步練習冊答案