【題目】直線AB、CD相交于點O,OE平分∠BOD.OF⊥CD,垂足為O,若∠EOF=54°.

(1)求∠AOC的度數(shù);

(2)作射線OG⊥OE,試求出∠AOG的度數(shù).

【答案】(1)72°(2)54°或126°

【解析】

1)依據(jù)垂線的定義,即可得到∠DOE的度數(shù),再根據(jù)角平分線的定義,即可得到∠BOD的度數(shù),進而得出結論;

2)分兩種情況討論,依據(jù)垂線的定義以及角平分線的定義,即可得到∠AOG的度數(shù).

1)∵OFCD,∠EOF54°,

∴∠DOE90°54°36°,

又∵OE平分∠BOD,

∴∠BOD2DOE72°

∴∠AOC72°;

2)如圖,若OG在∠AOD內(nèi)部,則

由(1)可得,∠BOE=∠DOE36°,

又∵∠GOE90°,

∴∠AOG180°90°36°54°;

如圖,若OG在∠COF內(nèi)部,則

由(1)可得,∠BOE=∠DOE36°,

∴∠AOE180°36°144°,

又∵∠GOE90°

∴∠AOG360°90°144°126°

綜上所述,∠AOG的度數(shù)為54°126°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩城相距800千米,一輛客車從甲城開往乙城,車速為千米小時,同時一輛出租車從乙城開往甲城,車速為90千米小時,設客車行駛時間為小時

時,客車與乙城的距離為多少千米用含a的代數(shù)式表示

已知,丙城在甲、乙兩城之間,且與甲城相距260千米

求客車與出租車相距100千米時客車的行駛時間;列方程解答

已知客車和出租車在甲、乙之間的服務站M處相遇時,出租車乘客小王突然接到開會通知,需要立即返回,此時小王有兩種返回乙城的方案:

方案一:繼續(xù)乘坐出租車到丙城,加油后立刻返回乙城,出租車加油時間忽略不計;

方案二:在M處換乘客車返回乙城.

試通過計算,分析小王選擇哪種方案能更快到達乙城?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.

1)畫出ABC向左平移2個單位,再向上平移3個單位后得到的A1B1C1;

2)圖中ACA1C1的關系是:   

3)畫出ABCBC邊上的中線AD

4ACD的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD的外側,作等邊三角形ADE,連接BE,CE

1)求證:BE=CE

2)求BEC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于 的一元二次方程 x2+(2m-1)x+m2=0有兩個實數(shù)根 x1 和 x2
(1)求實數(shù) m 的取值范圍;
(2)當 x12-x22 時,求 m 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3DE垂直平分AB,分別交ABBC于點D、E,AP平分∠BAC,與DE的延長線交于點P

1)求PD的長度;

2連結PC,求PC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同時擲兩枚標有數(shù)字1~6的正方形骰子,數(shù)字和為1的概率是 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1對應的函數(shù)表達式為y=2x-2,直線l1與x軸交于點D.直線l2:y=kx+b與x軸交于點A,且經(jīng)過點B,直線l1,l2交于點C(m,2).

(1)求點D,點C的坐標;

(2)求直線l2對應的函數(shù)表達式;

(3)求△ADC的面積;

(4)利用函數(shù)圖象寫出關于x,y的二元一次方程組的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠COE=90°,OF平分∠AOE.

(1)若∠COF=40°,求∠BOE的度數(shù).

(2)若∠COF=α(0°<α<90°),則∠BOE=______(用含α的式子表示).

查看答案和解析>>

同步練習冊答案