【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(2,3)和(0,2).
(1)AB的長為 ;
(2)點C在y軸上,△ABC是等腰三角形,寫出所有滿足條件的點C的坐標.
【答案】(1);(2)(0,4)或(0,2+)或(0,2﹣)或(0,) .
【解析】
(1)直接利用兩點間的距離公式即可得出結論;
(2)分三種情況討論,利用等腰三角形的性質建立方程求解即可.
(1)∵A(2,3),B(0,2),
∴AB=,
故答案為;
(2)設點C(0,m),
∵A(2,3),B(0,2),
∴BC=|m-2|,AC=,
由(1)知,AB=,
∵△ABC是等腰三角形,∴①當AB=AC時,
∴=,
∴m=2(舍)或m=4,
∴C(0,4),
②當AB=BC時,|m-2|=,
∴m=2±,
∴C(0,2+)或(0,2-),
③當AC=BC時,|m-2|=,
∴m=,
∴C(0,),
即:C(0,4)或(0,2+)或(0,2-)或(0,).
故答案為:(0,4)或(0,2+)或(0,2-)或(0,).
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,對角線AC、BD交于點O,將BD繞點B逆時針旋轉30°到BE所在的位置,BE與AD交于點F,分別連接DE、CE.
(1)求證:DE=DF;
(2)求證:AE∥BD;
(3)求tan∠ACE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正三角形ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,則△DEF的面積與△ABC的面積之比等于( )
A.1:3
B.2:3
C. :2
D. :3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利用等式的性質解下列方程:
(1)x-1=3;
(2)-5x=15;
(3)5x+4=-24;
(4)0.2x-0.5=0.7;
(5)2x-1=4x+3;
(6)4-3x=2x-1.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】操作探究:如圖,△ABC在平面直角坐標系中,其中,點A,B,C的坐標分別為A(–2,1),B(–4,5),C(–5,2).
(1)作△ABC關于直線l:x=–1對稱的△A1B1C1,其中,點A, B,C的對稱點分別為點A1,B1,C1;
(2)寫出點C1的坐標__________;
(3)在平面直角坐標系中有一點P位于第四象限,其坐標表示為P(m,n),則點P關于直線l的對稱點Q的坐標表示為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠AOB是一個直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD,OE.
(1) 如圖1,當∠BOC=70°時,求∠DOE的度數.
(2) 如圖2,當射線OC在∠AOB內繞點O旋轉時,∠DOE的大小是否發(fā)生變化?說明理由.
(3) 當射線OC在∠AOB外繞點O旋轉且∠AOC為鈍角時,畫出圖形,直接寫出相應的∠DOE的度數.(不必寫出過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E、F、G、H分別是任意四邊形ABCD中AD、BD、BC、CA的中點,
(1)求證:四邊形EFGH是平行四邊形;
(2)四邊形ABCD的邊至少滿足什么條件時,四邊形EFGH是菱形?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,斜坡AB的坡度是i=1:2,坡角B處有一棵樹BC,某一時刻測得樹BC在斜坡AB上的影子BD的長度是10米,這時測得太陽光線與水平線的夾角為60°,則樹BC的高度為多少米?(結果保留根號).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com