【題目】如圖,在△ABC中,∠C=90°,D,F是AB邊上的兩點,以DF為直徑的⊙O與BC相交于點E,連接EF,∠OFE=∠A.
(1)求證:BC是⊙O的切線;
(2)若sinB=,求∠FEC。
【答案】(1)證明見解析;(2)60°
【解析】試題分析:(1)首先連接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE=∠A,易得EF平分∠BFG,繼而證得OE∥FG,證得OE⊥BC,則可得BC是⊙O的切線;
(2)由sinB=得,∠B=30°,從而∠A=60°,由∠OFE=∠A得∠OFE=30°
故得∠FEC=60°
試題解析:(1)連接OE,
∵在△ABC中,∠C=90°,FG⊥BC,
∴∠BGF=∠C=90°,
∴FG∥AC,
∴∠OFG=∠A,
∴∠OFE=∠OFG,
∴∠OFE=∠EFG,
∵OE=OF,
∴∠OFE=∠OEF,
∴∠OEF=∠EFG,
∴OE∥FG,
∴OE⊥BC,
∴BC是⊙O的切線;
(2)在RtΔABC中,sinB=
∴∠B=30°
∴∠A=60°
∵∠OFE=∠A,
∴∠OFE=30°
∴∠FEC=30°+30°=60°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,(n+1)個邊長為2的等邊三角形有一條邊在同一直線上,設(shè)△B2D1C1的面積為S1,△B3D2C2的面積為S2,…,△B(n+1)DnCn的面積為Sn,則Sn=____(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=-x2+ax+b的圖象與y軸交于點A(0,-2),與x軸交于點B(1,0)和點C,D(m,0)(m>2)是x軸上一點.
(1)求二次函數(shù)的解析式;
(2)點E是第四象限內(nèi)的一點,若以點D為直角頂點的Rt△CDE與以A,O,B為頂點的三角形相似,求點E坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)的條件下,拋物線上是否存在一點F,使得四邊形BCEF為平行四邊形?若存在,請求出點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的有( )
①垂直平分弦的直線經(jīng)過圓心;②平分弦的直徑一定垂直于弦;
③相等的圓周角所對的弧相等;④等弧所對的弦相等;
⑤等弦所對的弧相等.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列性質(zhì)中,菱形具有而矩形不一定具有的是( )
A. 對角線互相平分 B. 對角線互相垂直 C. 對邊平行且相等 D. 對角線相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+4x+m-1=0。
(1)當(dāng)m何值時,方程有兩個相等的實數(shù)根;
(2)當(dāng)m=2時,設(shè)α、β是方程的兩個實數(shù)根,求α2+β2+αβ的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖①所示,A點坐標(biāo)為(﹣4,0),B點坐標(biāo)為(6,0),點D為BC的中點,點E為線段AB上一動點,連接DE經(jīng)過點A、B、C三點的拋物線的解析式為.
(1)求拋物線的解析式;
(2)如圖①,將△ADE以DE為軸翻折,點A的對稱點為點G,當(dāng)點G恰好落在拋物線的對稱軸上時,求G點的坐標(biāo);
(3)如圖②,當(dāng)點E在線段AB上運動時,拋物線的對稱軸上是否存在點F,使得以C、D、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的三邊為斜邊分別向外作等腰直角三角形.若斜邊AB= ,則圖中陰影部分的面積為( )
A.1
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com