某科研所投資200萬元,成功地研制出一種市場需求量較大的汽配零件,并投入資金700萬元進(jìn)行批量生產(chǎn).已知每個零件成本20元.通過市場銷售調(diào)查發(fā)現(xiàn):當(dāng)銷售單價定為50元時,年銷售量為20萬件;銷售單價每增加1元,年銷售量將減少1000件.設(shè)銷售單價為x元,年銷售量為y(萬件),年獲利為z(萬元)
(1)試寫出y與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍)
(2)試寫出z與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍)
(3)當(dāng)銷售單價定為多少時,年獲利最多?并求出這個年利潤.
(1)當(dāng)銷售單價為x元時,銷量為:[20-0.1(x-50)]萬件,
故可得:y=20-0.1(x-50)=25-0.1x;

(2)z=(x-20)y-200-700=(x-20)(25-0.1x)-900=-0.1x2+27x-1400;

(3)z=-0.1x2+27x-1400=-0.1(x-135)2+422.5,
當(dāng)x=135時,年獲利最大,年利潤為422.5萬元.
答:當(dāng)銷售單價定為135元時,年獲利最大,最大年利潤為422.5萬元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C-D-E上移動,若點C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)平面中,O為坐標(biāo)原點,二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點C,與x軸相交于A、B兩點(如圖),點C的坐標(biāo)為(0,-3),且BO=CO
(1)求出B點坐標(biāo)和這個二次函數(shù)的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2
+bx+c與y軸相交于C,與x軸相交于A、B,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,-1).
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連接DC,當(dāng)△DCE的面積最大時,求點D的坐標(biāo);
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用長為24米的籬笆,一面利用10米的墻,圍成一個中間隔有一道籬笆的長方形花園.設(shè)花園的寬AB為x米,面積為y米2
(1)求y與x之間的函數(shù)關(guān)系式
(2)當(dāng)寬AB為多少是,圍成面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A、B兩點的坐標(biāo)分別為(-3,0)、(0,3),C點在x軸的正半軸上,且到原點的距離為1.點P、Q分別從A、B兩點同時出發(fā),以相同的速度分別向x軸、y軸的正方向作勻速直線運動,直線PQ交直線AB于D.
(1)求經(jīng)過A、B、C三點的拋物線及直線AB解析式;
(2)設(shè)AP的長為m,△PBQ的面積為S,求出S關(guān)于m的函數(shù)關(guān)系式.
(3)作PE⊥AB于E,當(dāng)P、Q運動時,線段DE的長是否改變?若改變請說明理由,若不改變,請求出DE的長;
(4)有一個以AB為邊的,且由兩個與△AOB全等的三角形拼結(jié)而成的平行四邊形ABST,試求出T點的坐標(biāo)(畫出圖形,直接寫出結(jié)果,不需求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+3交x軸于點A(x1,0)、B(-1,0)且x1>0,AO2+BO2=10,拋物線交y軸于點C,點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)證明△ADC是直角三角形;
(3)第一象限內(nèi),在拋物線上是否存在一點E,使∠ECO=∠ACB?若存在,求出點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將現(xiàn)有一根長為1的鐵絲.
(1)若把它截成四段然后圍成圖1所示的“口”形的矩形框,當(dāng)矩形框的長a與矩形框的寬b滿足a=______b時所圍成的矩形框面積最大.
(2)若把它截成六段,①可以圍成圖2所示的“目”形的矩形框,當(dāng)矩形框的長a與矩形框的寬b滿足a=______b時所圍成的矩形框面積最大;②可以圍成圖3所示的“田”形矩形框,當(dāng)矩形框的長a與矩形框的寬b滿足a=______b時所圍成的矩形框面積最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某企業(yè)為了增收節(jié)支,設(shè)計了一款成本為20元∕件的工藝品投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元∕件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,根據(jù)所描出的點猜想y是x的什么函數(shù),并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

同步練習(xí)冊答案