【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)90°至圖②位置,,以此類推,這樣連續(xù)旋轉(zhuǎn)2015次后,頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是_____

【答案】3024π

【解析】

首先求得每一次轉(zhuǎn)動的路線的長,發(fā)現(xiàn)每4次循環(huán),找到規(guī)律然后計算即可.

解:∵AB=4,BC=3,

∴AC=BD=5,

轉(zhuǎn)動一次A的路線長是:=2π,

轉(zhuǎn)動第二次的路線長是:=π,

轉(zhuǎn)動第三次的路線長是:=π,

轉(zhuǎn)動第四次的路線長是:0,

以此類推,每四次循環(huán),

故頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:π+π+2π=6π,

2015÷4=5033,

頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:6π×504=3024π.

故答案為:3024π.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD∠BAD=∠C=90,AB=AD,AE⊥BCE,旋轉(zhuǎn)后能與重合.

(1)旋轉(zhuǎn)中心是哪一點?

(2)旋轉(zhuǎn)了多少度?

(3)若AE=5㎝,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用直尺和圓規(guī)畫一個角等于已知角,是運用了全等三角形的對應(yīng)角相等這一性質(zhì),其全等的依據(jù)是( )

ASAS BASA CAAS DSSS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰三角形ABC中,∠A、∠B、∠C的對邊分別為a、b、c,已知a=3,b和c是關(guān)于x的方程x2+mx+2-m=0的兩個實數(shù)根.

(1)ABC的周長.

(2)ABC的三邊均為整數(shù)時的外接圓半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是線段BC上的一個動點,以AD為直徑作⊙O分別交AB、ACE、F,連結(jié)EF,則線段EF長度的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDAB,BEAC,垂足分別為DE,BE、CD相交于點O.如果ABAC,那么圖中全等的直角三角形的對數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBCDCEC,ACBCDCEC

1)求證:AEBD;

2)求證:AEBD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,直角邊為a、b,斜邊為c.若把關(guān)于x的方程ax2+cx+b=0稱為勾系一元二次方程,則這類勾系一元二次方程的根的情況是( 。

A. 有兩個不相等的實數(shù)根 B. 有兩個相等的實數(shù)根

C. 沒有實數(shù)根 D. 一定有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在RtABC 中,∠ACB=90°,D 是邊 AB 上的中點,DE 平分∠CDB,且 DE=AC

1)求證:CE=AD;

2)如果AC=BC,求證:四邊形BECD 是正方形.

查看答案和解析>>

同步練習冊答案