(本題14分)如圖11,在△ABC中,∠ACB=,AC=BC=2,M是邊AC的中點,
CH⊥BM于H.

(1)試求sin∠MCH的值;
(2)求證:∠ABM=∠CAH;
(3)若D是邊AB上的點,且使△AHD為等腰三角形,請直接寫出AD的長為________.
解:(1)在△MBC中,∠MCB=,BC=2,
又∵M(jìn)是邊AC的中點,
∴AM=MC=BC=1,——————————————————(1分)
∴MB=, ————————————————(1分)
又CH⊥BM于H,則∠MHC=,
∴∠MCH=∠MBC,——————————————————(1分)
∴sin∠MCH=.————————————————(1分)
(2)在△MHC中,.———————(1分)
∴AM2=MC2=,即,————————(2分)
又∵∠AMH=∠BMA,
∴△AMH∽△BMA,——————————————————(1分)
∴∠ABM=∠CAH. ——————————————————(1分)
(3)、、.—————————————————(5分)解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題14分)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點.

(1)求正比例函數(shù)和反比例函數(shù)的解析式;

(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點,求的值和這個一次函數(shù)的解析式;

(3)第(2)問中的一次函數(shù)的圖象與軸、軸分別交于C、D,求過A、B、D三點的二次函數(shù)的解析式;

(4)在第(3)問的條件下,二次函數(shù)的圖象上是否存在點E,使的面積的面積S滿足:?若存在,求點E的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點P從點C出發(fā)沿CD方向向點D運(yùn)動,動點Q同時以相同速度從點D出發(fā)沿DA方向向終點A運(yùn)動,其中一個動點到達(dá)端點時,另一個動點也隨之停止運(yùn)動.
(1)求AD的長;
(2)設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式,并求自變量的取值范圍;
(3)探究:在BC邊上是否存在點M使得四邊形PDQM是菱形?若存在,請找出點M,并求出BM的長;不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆上海市黃浦區(qū)數(shù)學(xué)學(xué)業(yè)考試模擬試卷 題型:解答題

(本題14分)如圖11,在△ABC中,∠ACB=,AC=BC=2,M是邊AC的中點,
CH⊥BM于H.

(1)試求sin∠MCH的值;
(2)求證:∠ABM=∠CAH;
(3)若D是邊AB上的點,且使△AHD為等腰三角形,請直接寫出AD的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省仙巖二中九年級數(shù)學(xué)模擬試題數(shù)學(xué)卷 題型:解答題

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點P從點C出發(fā)沿CD方向向點D運(yùn)動,動點Q同時以相同速度從點D出發(fā)沿DA方向向終點A運(yùn)動,其中一個動點到達(dá)端點時,另一個動點也隨之停止運(yùn)動.
(1)求AD的長;
(2)設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式,并求自變量的取值范圍;
(3)探究:在BC邊上是否存在點M使得四邊形PDQM是菱形?若存在,請找出點M,并求出BM的長;不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷市)九年級第二次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題14分)如圖,AB為⊙O的直徑,AC為⊙O的弦,AD平分∠BAC,交⊙O于點DDEAC,交AC的延長線于點E

(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;

(2)若AE=8,⊙O的半徑為5,求DE的長.

 

查看答案和解析>>

同步練習(xí)冊答案