【題目】如圖,在平面直角坐標系中,點AC分別在x軸上、y軸上,CB//OA,OA=8,若點B的坐標為(a,b),b=.

(1)直接寫出點A、BC的坐標;

(2)若動點P從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,當直線PC把四邊形OABC分成面積相等的兩部分停止運動,求P點運動時間;

(3)在(2)的條件下,在y軸上是否存在一點Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點Q的坐標;若不存在,請說明理由.

【答案】(1)A(8,0),B(4,4),C(0.4);(2)t=;(3)(0,13),(0,-5)

【解析】分析:1)根據(jù)線段的長和線段的特點以及二次根式有意義的條件確定出點的坐標;

2)先求出S四邊形OABC=24,從而得到×OP×4=12,求出OP即可得到結論;

3)根據(jù)四邊形OABC的面積求出△CPQ的面積是24,即可求出點Q的坐標.

詳解1)過BBEOAE.∵a-4≥04-a≥0,∴a=4,∴b=4,∴B4,4,∴OC=EB=4,∴C0.4.∵OA=8,∴A8,0);

2)設運動時間t秒,∴OP=2t 2t4=,∴t=3.

3)設Q0,y), ,∴ =(4+8)4,

=13,=5,∴013),0,-5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M沿路線O→A→C運動.

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)當OMC的面積是OAC的面積的時,求出這時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,點E在邊AD上,點F在邊BC上,且AE=CF,作EG∥FH,分別與對角線BD交于點G、H,連接EH,F(xiàn)G.

(1)求證:△BFH≌△DEG;
(2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點OACBD的交點,過點O的直線與BA的延長線,DC的延長線分別交于點E,F.

(1)求證:△AOE≌△COF.

(2)連接ECAF,則EFAC滿足什么數(shù)量關系時,四邊形AECF是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中,A、B、C.將其平移后得到,A,B的對應點是,,C的對應點的坐標是.

(1)在平面直角坐標系中畫出ABC;

(2)寫出點的坐標是_____________,坐標是___________;

(3)此次平移也可看作________平移了____________個單位長度,再向_______平移了______個單位長度得到△ABC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為10的菱形ABCD中,對角線BD16,對角線AC,BD相交于點G,點O是直線BD上的動點,OEABEOFADF.

(1)求對角線AC的長及菱形ABCD的面積.

(2)如圖①,當點O在對角線BD上運動時,OEOF的值是否發(fā)生變化?請說明理由.

(3)如圖②,當點O在對角線BD的延長線上時,OEOF的值是否發(fā)生變化?若不變,請說明理由;若變化,請?zhí)骄?/span>OEOF之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB∥CD,F(xiàn)H平分∠EFD,F(xiàn)G⊥FH,∠AEF=62°,則∠GFC=_____度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某飛機于空中A處探測到目標C,此時飛行高度AC=1200m,從飛機上看地平面指揮臺B的俯角α=16°31′,則飛機A與指揮臺B的距離等于(結果保留整數(shù))(參考數(shù)據(jù)sin16°31′=0.28,cos16°31′=0.95,tan16°31′=0.30)

查看答案和解析>>

同步練習冊答案