【題目】如圖,矩形ABCD中,AB=6,AD=8,P,E分別是線段AC、BC上的點,且四邊形PEFD為矩形.

(Ⅰ)若△PCD是等腰三角形時,求AP的長;
(Ⅱ)若AP= ,求CF的長.

【答案】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,
∴DC=AB=6,
∴AC= =10,
要使△PCD是等腰三角形,
①當CPCD時,AP=AC﹣CP=10﹣6=4,
②當PD=PC時,∠PDC=∠PCD,
∵∠PCD+∠PAD=∠PDC+∠PDA=90°,
∴∠PAD=∠PDA,
∴PD=PA,
∴PA=PC,
∴AP= AC=5,
③當DP=DC時,如圖1,過點D作DQ⊥AC于Q,

則PQ=CQ,
∵S△ADC= ADDC= ACDQ,
∴DQ= = ,
∴CQ= = ,
∴PC=2CQ= ,
∴AP=AC﹣PC=10﹣ = ;
所以,若△PCD是等腰三角形時,AP=4或5或 ;
(Ⅱ)如圖2,連接PF,DE記PF與DE的交點為O,連接OC,

∵四邊形ABCD和PEFD是矩形,
∴∠ADC=∠PDF=90°,
∴∠ADP+∠PDC=∠PDC+∠CDF,
∴∠ADP=∠CDF,
∵∠BCD=90°,OE=OD,
∴OC= ED,
在矩形PEFD中,PF=DE,
∴OC= PF,
∵OP=OF= PF,
∴OC=OP=OF,
∴∠OCF=∠OFC,∠OCP=∠OPC,
∵∠OPC+∠OFC+∠PCF=180°,
∴2∠OCP+2∠OCF=180°,
∴∠PCF=90°,
∴∠PCD+∠FCD=90°,
在Rt△ADC中,∠PCD+∠PAD=90°,
∴∠PAD=∠FCD,
∴△ADP∽△CDF,
,
∵AP= ,
∴CF=
【解析】(Ⅰ)先求出AC,再分三種情況討論計算即可得出結(jié)論;(Ⅱ)先判斷出OC= ED,OC= PF,進而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判斷出△ADP∽△CDF,得出比例式即可得出結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等,以及對相似三角形的應用的理解,了解測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不到達兩點間的舉例,常構(gòu)造相似三角形求解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解2013年八年級學生課外書籍借閱情況,從中隨機抽取了40名學生課外書籍借閱情況,將統(tǒng)計結(jié)果列出如下的表格,并繪制成如圖所示的扇形統(tǒng)計圖,其中科普類冊數(shù)占這40名學生借閱總冊數(shù)的40%.

類別

科普類

教輔類

文藝類

其他

冊數(shù)(本)

128

80

m

48


(1)求表格中字母m的值及扇形統(tǒng)計圖中“教輔類”所對應的圓心角α的度數(shù);
(2)該校2013年八年級有500名學生,請你估計該年級學生共借閱教輔類書籍約多少本?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中2條直線為l1:y=﹣3x+3,l2:y=﹣3x+9,直線l1交x軸于點A,交y軸于點B,直線l2交x軸于點D,過點B作x軸的平行線交l2于點C,點A、E關(guān)于y軸對稱,拋物線y=ax2+bx+c過E、B、C三點,下列判斷中:
①a﹣b+c=0;②2a+b+c=5;③拋物線關(guān)于直線x=1對稱;④拋物線過點(b,c);⑤S四邊形ABCD=5,
其中正確的個數(shù)有( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tan∠AOC= ,反比例函數(shù)y= 的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,把矩形OABC沿對角線AC所在直線折疊,點B落在點D處,DC與y軸相交于點E,矩形OABC的邊OC,OA的長是關(guān)于x的一元二次方程x2﹣12x+32=0的兩個根,且OA>OC.

(1)求線段OA,OC的長;
(2)求證:△ADE≌△COE,并求出線段OE的長;
(3)直接寫出點D的坐標;
(4)若F是直線AC上一個動點,在坐標平面內(nèi)是否存在點P,使以點E,C,P,F(xiàn)為頂點的四邊形是菱形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】BC為鄰邊作菱形ABCD,頂點D恰在該圓直徑的三等分點上,則該菱形的邊長為(
A. 或2
B. 或2
C. 或2
D. 或2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為 的中點,作DE⊥AC,交AB的延長線于點F,連接DA.
(1)求證:EF為半圓O的切線;
(2)若DA=DF=6 ,求陰影區(qū)域的面積.(結(jié)果保留根號和π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校召集留守兒童過端午節(jié),桌上擺有甲、乙兩盤粽子,每盤中盛有白粽2個,豆沙粽1個,肉粽1個(粽子外觀完全一樣).
(1)小明從甲盤中任取一個粽子,取到豆沙粽的概率是;
(2)小明在甲盤和乙盤中先后各取了一個粽子,請用樹狀圖或列表法求小明恰好取到兩個白粽子的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aln2x+bx在x=1處取得最大值ln2﹣1,則a= , b=

查看答案和解析>>

同步練習冊答案