【題目】(綜合與實(shí)踐

如圖,直線的函數(shù)關(guān)系式為,且軸交于點(diǎn)A,直線經(jīng)過點(diǎn)B2,0),C(-1,3),直線交于點(diǎn)D

(1)求直線的函數(shù)關(guān)系式;

(2)求△ABD的面積.

(3)點(diǎn)P軸上一動點(diǎn),問是否存在一點(diǎn)P,恰好使△ADP為直角三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】(1)y=x+2;(28;(3)存在,點(diǎn)P的坐標(biāo)為(6,0)或(8,0

【解析】

1)根據(jù)直線l2經(jīng)過點(diǎn)A2,0),B-1,3),可以求得直線l2的函數(shù)關(guān)系式;
2)將直線l1和直線l2的函數(shù)表達(dá)式聯(lián)立成二元一次方程組,即可求得點(diǎn)D的坐標(biāo);根據(jù)直線l1的表達(dá)式可以求得點(diǎn)A的坐標(biāo),即可求得△ABD的面積.

3)分∠APD=90°時、∠ADP=90°時兩種情況討論.

1)設(shè)直線l2的函數(shù)關(guān)系式為:y=kx+b,

∵直線過點(diǎn)B2,0),C(-13),

解得:

∴直線l2的函數(shù)關(guān)系式為:y=x+2

2)過點(diǎn)DDEx軸,垂足為點(diǎn)E

∵直線l1l2交于點(diǎn)D

,解得,

D6-4

DE=4

y=0代入y=-x1x=2,

∴點(diǎn)A的坐標(biāo)是(-2,0),

∵點(diǎn)B的坐標(biāo)是(2,0),

AB=4..

SABCAB×DE×4×48

3)存在一點(diǎn)P,恰好使△ADP為直角三角形, 點(diǎn)P的坐標(biāo)為(6,0)或(8,0. 理由是:

當(dāng)∠APD=90°時,P1點(diǎn)坐標(biāo)為(6,0

當(dāng)∠ADP=90°時,設(shè)Px,0

可列方程為:42+(x62=(x22-(4282

解得:x8

所以P(8,0)

∴點(diǎn)P的坐標(biāo)為(6,0)或(8,0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yx2mxn的圖象經(jīng)過A(0,3),且對稱軸是直線x=2.

(1)求該函數(shù)的解析式;

(2)在拋物線上找一點(diǎn)P,使PBC的面積是ABC的面積的,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料一:我們可以將任意三位數(shù)記為,(其中分別表示該數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字,且),顯然.

材料二:若一個三位數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字均不為0,則稱之為初始數(shù),比如123就是一個初始數(shù),將初始數(shù)的三個數(shù)位上的數(shù)字交換順序,可產(chǎn)生出5個新的初始數(shù),比如由123可以產(chǎn)生出132,213231,312,3215個新初始數(shù),這6個初始數(shù)的和成為終止數(shù).

1)求初始數(shù)125生成的終止數(shù);

2)若一個初始數(shù),滿足,且,記,,,若,求滿足條件的初始數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年是全面建成小康社會收官之年,某扶貧幫扶小組積極響應(yīng),對農(nóng)民實(shí)施精準(zhǔn)扶貧.某農(nóng)戶老張家種植花椒和黑木耳兩種干貨共800千克,扶貧小組通過市場調(diào)研發(fā)現(xiàn),花椒市場價60/千克,黑木耳市場價48/千克,老張全部售完可以收入4.2萬元.已知老張種植花椒成本需25/千克,種植木耳成本需35/千克,根據(jù)脫貧目標(biāo)任務(wù)要求,老張種植花椒和黑木耳的兩種干貨的純收入(銷售收入-種植成本)在2萬元以上才可以順利脫貧.請你分析一下扶貧幫扶小組是否能幫助老張順利脫貧.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖),圖是平面圖.光明中學(xué)的數(shù)學(xué)興趣小組針對風(fēng)電塔桿進(jìn)行了測量,甲同學(xué)站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學(xué)站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關(guān)部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG4米,兩處的水平距離AG23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們節(jié)能環(huán)保,綠色出行意識的增強(qiáng),越來越多的人喜歡騎自行車出行,同時也給自行車商家?guī)砩虣C(jī). 某自行車行銷售型,型兩種自行車,經(jīng)統(tǒng)計,2019年此車行銷售這兩種自行車情況如下:自行車銷售總額為8萬元. 每輛型自行車的售價比每輛型自行車的售價少200元,型自行車銷售數(shù)量是自行車的1. 25倍, 自行車銷售總額比A型自行車銷售總額多.

1)求每輛型自行車的售價多少元.

2)若每輛型自行車進(jìn)價1400元,每輛型自行車進(jìn)價1300元,求此自行車行2019年銷售型自行車的總利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長方形的頂點(diǎn)的坐標(biāo)分別為,的中點(diǎn),動點(diǎn)點(diǎn)出發(fā),以每秒個單位長度的速度,沿著運(yùn)動,設(shè)點(diǎn)運(yùn)動的時間為秒(.

1)點(diǎn)的坐標(biāo)是______;

2)當(dāng)點(diǎn)上運(yùn)動時,點(diǎn)的坐標(biāo)是______(用表示);

3)求的面積之間的函數(shù)表達(dá)式,并寫出對應(yīng)自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,,點(diǎn)、分別為邊、上的動點(diǎn),當(dāng)的周長最小時,的度數(shù)是______________.

查看答案和解析>>

同步練習(xí)冊答案