(1)如圖1,O是內(nèi)一點(diǎn),且BO,CO分別平分,.若,則=__________;若,則=___________;
(2)如圖2,O是外一點(diǎn),BO,CO分別平分的外角,. 若,求;
(3)如圖3,O是外一點(diǎn),BO,CO分別平分,. 若,求.
圖1 圖2 圖3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:022
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆山東省八年級(jí)上期第二次月考數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,,P是內(nèi)任意一點(diǎn),、分別是點(diǎn)P關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn),連接與OA、OB分別交于點(diǎn)C、D,若 則的周長(zhǎng)是________,________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
幾何模型:
條件:如下左圖,、是直線同旁的兩個(gè)定點(diǎn).
問(wèn)題:在直線上確定一點(diǎn),使的值最。
方法:作點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn),連結(jié)交于點(diǎn),則的值最。ú槐刈C明).
模型應(yīng)用:
(1)如圖1,正方形的邊長(zhǎng)為2,為的中點(diǎn),是上一動(dòng)點(diǎn).連結(jié),由正方形對(duì)稱(chēng)性可知,與關(guān)于直線對(duì)稱(chēng).連結(jié)交于,則的最小值是___________;
(2)如圖2,的半徑為2,點(diǎn)在上,,,是上一動(dòng)點(diǎn),求的最小值;
(3)如圖3,,是內(nèi)一點(diǎn),,分別是上的動(dòng)點(diǎn),求周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
條件:如下左圖,、是直線同旁的兩個(gè)定點(diǎn).問(wèn)題:在直線上確定一點(diǎn),使的值最。椒ǎ鹤鼽c(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn),連結(jié)交于點(diǎn),則的值最。ú槐刈C明).
模型應(yīng)用:
(1)如圖1,正方形的邊長(zhǎng)為2,為的中點(diǎn),是上一動(dòng)點(diǎn).連結(jié),由正方形對(duì)稱(chēng)性可知,與關(guān)于直線對(duì)稱(chēng).連結(jié)交于,則的最小值是___________;
(2)如圖2,的半徑為2,點(diǎn)在上,,,是上一動(dòng)點(diǎn),求的最小值;
(3)如圖3,,是內(nèi)一點(diǎn),,分別是上的動(dòng)點(diǎn),求周長(zhǎng)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com