如圖,已知直線與雙曲線交于A(),B()兩點(diǎn)(AB不重合),

   直線AB軸交于P(),與軸交于點(diǎn)C.

   (1) 若A,B兩點(diǎn)的坐標(biāo)分別為(1,3),(3,y2).求點(diǎn)P的坐標(biāo);

  (2)若,點(diǎn)的坐標(biāo)為(6,0),且.求兩點(diǎn)的坐標(biāo);

  (3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示之間的關(guān)系(不要求證明).

        

       

  


解析:(1) 把A(1,3)代入得:, 把B代入得:,∴B(3,1).

          把A(1,3),B(3,1)分別代入得:,解得:,

          ∴ ,令,得, ∴

      (2) ∵, ∴的中點(diǎn),由中點(diǎn)坐標(biāo)公式知:

          ∵兩點(diǎn)都在雙曲線上,∴,解得, ∴ .

          作AD⊥于點(diǎn)D(如右圖), 則△∽△,

          ∴,即, 又,

          ∴ ,∴.

          ∴

      (3) 結(jié)論:.

          理由如下:∵A(),B(),∴, ∴

          令,得 ,∵, ∴

          = , 即

  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


將邊長為4的等邊三角形OAB放置在平面直角坐標(biāo)系中,其中O為坐標(biāo)原

點(diǎn),點(diǎn)B在軸正半軸上,點(diǎn)A在第一象限內(nèi),點(diǎn)D是線段OB上的動(dòng)點(diǎn),設(shè)OD=.

(1)直接寫出點(diǎn)B的坐標(biāo)(     ,     ).

(2)求△AOD的面積(用含的代數(shù)式表示).

(3)如圖1,以AD為直徑的⊙M分別交OA、AB于點(diǎn)E、F,連接EF,求線段EF

長度的最小值.

(4)如圖2,點(diǎn)C為線段AB上的點(diǎn),且BC=AB,點(diǎn)P在線段OA上(不與O、A重合).點(diǎn)D在線段OB上運(yùn)動(dòng),當(dāng)∠CPD=60°時(shí),求滿足條件的點(diǎn)P的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


“皮克定理”是來計(jì)算原點(diǎn)在整點(diǎn)的多邊形面積的公式,公式表達(dá)式為,孔明只記得公式中的S表示多邊形的面積,中有一個(gè)表示多邊形那邊上(含原點(diǎn))的整點(diǎn)個(gè)數(shù),另一個(gè)表示多邊形內(nèi)部的整點(diǎn)的個(gè)數(shù),但不記得究竟是還是表示多邊形內(nèi)部的整點(diǎn)的個(gè)數(shù),請(qǐng)你選擇一些特殊的多邊形(如圖1)進(jìn)行驗(yàn)證,得到公式中表示多邊形內(nèi)部整點(diǎn)個(gè)數(shù)的字母是   ;并運(yùn)用這個(gè)公式求得如圖2中多邊形的面積是    

 

 

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,OP平分∠MON , PEOME,  PFONF,OA=OB, 則圖中有       對(duì)全等三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點(diǎn)中心對(duì)稱,已知A, D1 ,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).

(1)對(duì)稱中心的坐標(biāo);

(2)寫出頂點(diǎn)B, C,  B1 , C1 的坐標(biāo).

 


  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1是由四個(gè)大小相同的正方體組成的幾何體,那么它的主視圖是( ※ )

  

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一個(gè)正多邊形的內(nèi)角和為540,則這個(gè)正多邊形的每一個(gè)外角等于(   )

  (A)60       (B)72       (C)90        (D)108

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在平面直角坐標(biāo)系中,已知A、B是拋物線上兩個(gè)不同的點(diǎn),其中A在第二象限,B在第一象限,

(1)如圖15-1所示,當(dāng)直線AB與軸平行,AOB=90,且AB=2時(shí),

     求此拋物線的解析式和A、B兩點(diǎn)的橫坐標(biāo)的乘積.

(2)如圖15-2所示,在(1)所求得的拋物線上,當(dāng)直線AB與軸不平行,AOB仍為90時(shí),

     A、B兩點(diǎn)的橫坐標(biāo)的乘積是否為常數(shù)?如果是,請(qǐng)給予證明,如果不是,請(qǐng)說明理由.

(3)在(2)的條件下,若直線分別交直線AB,y軸于點(diǎn)P、C,直線AB交y軸于點(diǎn)D,

     且BPC=OCP,求點(diǎn)P的坐標(biāo).

       

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


東營市2014年城鎮(zhèn)居民人均可支配收入是37000元,比2013年提高了8.9%.37000元用科學(xué)記數(shù)法表示是 元.

查看答案和解析>>

同步練習(xí)冊(cè)答案